APPENDIX A: DRAFT GEOTECHNICAL INVESTIGATION REPORT

Geotechnical Engineering • Engineering Geology

Geotechnical Investigation Report

CARRIAGE CREST PARK STORMWATER STORAGE FACILITIES 23800 S. Figueroa Street Carson, California

Prepared for:

Los Angeles County Sanitation District 1955 Workman Mill Road. Whittier, CA 90601

Prepared by:

Tetra Tech 1360 Valley Vista Drive Diamond Bar, California 91765

January 27, 2017 (Rev. April 19, 2017) Project No. TET 16-101E

Project No. TET 16-101E January 27, 2017 (Rev. April 19, 2017)

Ms. Kristen Ruffell Los Angeles County Sanitation District 1955 Workman Mill Road. Whittier, CA 90601

Subject: GEOTECHNICAL INVESTIGATION REPORT, Revision No. 1 CARRIAGE CREST PARK STORMWATER STORAGE FACILITIES 23800 S. Figueroa Street Carson, California

Dear Ms. Ruffell:

Presented herein is Tetra Tech's geotechnical investigation report for the proposed stormwater storage facilities at the Carriage Crest Park located at 23800 S Figueroa Street, in the City of Carson, California. This report summarizes the results of our geotechnical investigation to characterize the soils at the site and provides recommendations for the geotechnical design and construction of the proposed facilities including the storage tanks, diversion structures, pumping structures, pipelines, and temporary shoring. The appendices of the report include logs of borings from the current investigation, Cone Penetration Testing (CPT) logs, results of laboratory tests, and liquefaction analyses. This report addresses comments by the Los Angeles County Sanitation District and supersedes the draft report dated November 21, 2016. This revision includes a minor change to the original Section 3 – Project Background and Description.

We appreciate the opportunity to provide our professional services on this project. If you have any questions regarding this report or if we can be of further service, please do not hesitate to contact the undersigned.

Respectfully submitted, **Tetra Tech**

Fernin A. Cuerca

Fernando Cuenca, Ph.D., P.E. Senior Project Engineer

Andrew McLarty, M(Sc., CE.G. Senior Engineering Geologist

Peter Skopek, Ph.D., G.E. Principal

Distribution: Addressee (pdf by email <u>KRuffell@lacsd.org</u>) Oliver Galang (pdf by email <u>Oliver.Galang@tetratech.com</u>)

Filename: 2017-04-19 Carriage Geotechnical Report RPT Rev 1.docx

TABLE OF CONTENTS

]	Page
1.	IN	NTRO	DUCTION	1
2.	S	COPE	OF WORK	2
3.	P	ROJE	CT BACKGROUND AND DESCRIPTION	3
4.	SI	UBSU	JRFACE EXPLORATIONS	4
5.			RATORY TESTING	
			JRFACE CONDITIONS	
6.				
	6.1.	REC 2.1.	GIONAL GEOLOGY Artificial Fill	
		2.1.	Native Alluvium	
	6.3.	GRO	OUNDWATER	
7.	E	NGIN	EERING SEISMOLOGY AND GEOLOGIC HAZARDS	10
	7.1.	Gen	NERAL SEISMIC SETTING	10
	7.2.		RFACE FAULT RUPTURE	
	7.3.		SMIC HAZARD ZONES	
	7.4.		UEFACTION POTENTIAL AND DYNAMIC SETTLEMENT	
		4.1.	Soil Description	
	7.4	4.2.	Groundwater Level for Liquefaction Analysis	
		4.3.	Liquefaction Seismic Demand	
		4.4.	Evaluation of Liquefaction Potential and Sensitivity Analyses	
	7.5.	4.5. EAT	Dynamic Settlement RTHQUAKE-INDUCED LANDSLIDES	
			JNAMI RISK	
	7.6.			
	7.7.	SUE	3SIDENCE	10
8.	D	ESIG	N RECOMMENDATIONS	18
	8.1.	Gen	NERAL	18
	8.2.	CLE	EARING AND GRUBBING	18
	8.3.	Siti	E PREPARATION	18
	8.4.	TEN	MPORARY SLOPES AND TRENCH EXCAVATIONS	20
	8.5.	TEN	MPORARY SHORED EXCAVATIONS	21
		5.1.	Soldier Pile and Lagging Wall System	
		5.2.	Soil Nail Wall	
		5.3. 5.4.	Shoring Performance Monitoring	
	ہ .8.6		Irrigation Control JNDATIONS	
		6.1.	Design Parameters for At-Depth Foundations	
		6.2.	Design Parameters for At Grade Shallow Foundations	
		6.3.	Footings Adjacent to Trenches	29
		6.4.	Foundation Construction Observations	
	8.7.		NCRETE SLAB-ON-GRADE OR MATS	
		7.1.	Structure Floor Slab-On-Grade or Mats	
		7.2.	Exterior Slabs	
	8.8.	UPL	LIFT OF BURIED STRUCTURES	32

8.9. Seismic Design Parameters	
8.10. LATERAL EARTH PRESSURES ON UNDERGROUND WALLS AND TANKS	
8.11. Embedded Posts and Poles at Grade	
8.11.1. Non-Constrained Case	
8.11.2. Constrained Case	
8.12. PIPELINE DESIGN AND CONSTRUCTION	
8.12.1. Trench Excavation	
8.12.2. Trench Bottom Preparation	
8.12.3. Trench Backfill	
8.13. PAVEMENT SECTIONS	
8.13.1. Subgrade Preparation	
8.13.2. Asphalt Concrete Pavement Design	
8.13.3. Pavement Construction Observations	
8.14. SOIL CORROSION	
8.15. Drainage Control	39
9. GENERAL SITE GRADING RECOMMENDATIONS	40
12. LIMITATIONS	44
13. SELECTED REFERENCES	45

Figures

Figure 1 – Project Location Map

Figure 2 – Site Layout, Boring and CPT Location Map

Figure 3 – Geologic Map

Figure 4 – Historic High Groundwater Map

- Figure 5 Regional Faults and Seismicity Map
- Figure 6 Seismic Hazard Zones Map

Appendices

Appendix A – Logs of Exploratory Borings

- Appendix B Logs of Cone Penetration Tests (CPTs)
- Appendix C Laboratory Testing

Appendix D – Liquefaction Analyses

1. INTRODUCTION

This report presents the results of Tetra Tech's geotechnical engineering evaluation for the proposed stormwater capture, storage, and conveyance facilities at the Carriage Crest Park Project (see Figure 1) located at 23800 S Figueroa Street, in the City of Carson, California. The proposed facilities include:

- a 4.2 MG underground storage reservoir; •
- two catch basin diversion structures; •
- a pump station; •
- a pre-treatment unit; and
- conveyance pipelines. •

The purpose of this study was to evaluate the subsurface conditions at the site and to provide recommendations for the design and construction of the proposed improvements. This report summarizes the collected data and presents our findings, conclusions, and geotechnical design recommendations.

2. SCOPE OF WORK

Tetra Tech's scope of services for this project consisted of the following tasks:

- Review of readily available background data, including in-house geotechnical data from our soil explorations in the vicinity of the proposed facilities.
- Perform a reconnaissance site visit to observe ground conditions and mark boring locations.
- Coordinate with Los Angeles County Sanitation District (LACSD) engineering staff, City of • Carson personnel, park staff, and Underground Service Alert (USA) for clearance of buried on-site utilities prior to drilling. Furthermore, utilities were also cleared using Ground Penetrating Radar (GPR) method.
- Conduct a subsurface investigation, including excavating, logging, and geotechnical sampling of 5 soil exploratory borings to a maximum depth of 51.5 feet. Contain soil cuttings in steel drums and dispose into an appropriate disposal facility.
- Conduct additional soil sampling for preliminary evaluation of environmental conditions at • the site. The description of that process and the results of the evaluation are included in a separate letter report.
- Advance 7 Cone Penetration Tests (CPTs) to characterize the subsurface conditions at the site.
- Consult with LACSD regarding laboratory testing schedule and perform laboratory testing of • selected samples recovered from the borings to evaluate geotechnical engineering properties of the on-site soils.
- Conduct an evaluation of the geotechnical data to develop geotechnical recommendations for the design and construction of the proposed structures including the following items:
 - An evaluation of general subsurface conditions and description of types, distribution, and engineering characteristics of subsurface materials.
 - An evaluation of the liquefaction potential and dynamic settlement of the on-site granular materials.
 - An evaluation of the suitability of on-site soils for the support of structures.
 - Recommendations for design of foundation systems including allowable bearing capacity, lateral resistance, and settlement estimates.
 - Determination of seismic design parameters in accordance with the 2013 California Building Code.
 - Evaluation of lateral earth pressure parameters for the design of the underground tanks and for the design of temporary shoring during construction.
 - An evaluation of the corrosion potential of the on-site soils to buried concrete.
- Prepare this written report documenting the work performed, physical data acquired, and geotechnical design recommendations.

3. PROJECT BACKGROUND AND DESCRIPTION

The Dominguez Channel Watershed Management Area Group (DCWMA Group) is comprised of the County of Los Angeles (County), Los Angeles County Flood Control District (LACFCD), and the cities of Carson, El Segundo, Hawthorne, Inglewood, Lawndale, Lomita, and Los Angeles (including the Port of Los Angeles). The DCWMA Group was formed in response to provisions of National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Permit Order No. R4-2012-0175 (Permit). The DCWMA Group, through a cooperative and collaborative process, developed an Enhanced Watershed Management Program (DCWMA Group EWMP). The Final DCWMA Group EWMP was subsequently approved by the Los Angeles Regional Water Quality Control Board on April 21, 2016.

The EWMP identified a suite of watershed control measures and structural Best Management Practices (BMPs). One of the regional structural BMPs identified in the Addendum to the DCWMA Group EWMP Carson was the Carriage Crest Park Project. It was identified as a high priority site for a regional stormwater capture project due to its proximity to two large storm drains with a total drainage area of 1,146 acres. This area discharges into Wilmington Drain which subsequently discharges into Machado Lake, and drains portions of unincorporated Los Angeles County and the Cities of Carson, Los Angeles, and Torrance.

In order to advance the development of the Carriage Crest Park Project, the City of Carson entered into a Cooperative Implementation Agreement with Caltrans to fund the Carson Water Capture Project. The City of Carson entered into a subsequent agreement with the Los Angeles County Sanitation Districts (LACSD) to manage the project, conduct engineering and geotechnical investigations, and assist with environmental clearance, permitting, design and construction management. The LACSD, pursuant to Senate Bill 485, is authorized to manage stormwater and dry weather runoff to assist local jurisdictions within the LACSD's service area to comply with stormwater-related regulatory requirements.

The Carson Water Capture Project consists of:

- a storm drain diversion structure;
- two catch basin diversion structures;
- pre-treatment unit;
- a 4.2 MG storage capacity underground storage reservoir about 20 feet deep and approximately 60,000 square feet in footprint located beneath the existing baseball fields;
- a pump station to convey flows to the sanitary sewer system and/or to an on-site treatment system where the water will undergo treatment and be used for on-site irrigation.

At this moment no specific information regarding the location. depth, and size of the diversion structures, pre-treatment unit, and pump station is available. Therefore the designer should verify with the Geotechnical Engineer the applicability of the recommendations contained herein once the final layout and preliminary design is completed.

4. SUBSURFACE EXPLORATIONS

The current subsurface soil and groundwater conditions beneath the site were explored on September 27 and 28, 2016 by Tetra Tech and included the drilling, logging, and sampling of 5 hollow stem auger exploratory borings B-1 through B-5, and 7 Cone Penetration Tests (CPTs).

Prior to starting the field exploration program, a field reconnaissance was conducted to observe surface conditions and to mark the locations of the planned boreholes and CPTs in agreement with LACSD engineering staff, the City of Carson Engineer, and park staff. A drilling permit was obtained from the Los Angeles County Department of Public Health (LACDPH) for all the subsurface explorations. Additionally, a GPR survey was conducted to identify buried utilities. Underground Service Alert, LACSD engineering staff, the LACDPH inspector, City of Carson personnel, and park staff were also notified of the drilling schedule at least 48 hours prior to drilling.

The hollow stem auger borings were excavated using a CME-75 truck-mounted drill rig equipped with an 8-inch diameter auger at the approximate locations indicated on Figure 2 – Site Layout, Boring and CPT Location Map. Borings B-1 and B-3 were advanced to a maximum depth of 51.5 feet and borings B-2, B-4, and B-5 were advanced to a maximum depth of approximately 31.5 feet. The CPTs were advanced to a maximum depth of approximately 50 feet using a standard electronic piezocone with a 15 cm² area and a 60-degree apex angle. The piezocone was pushed utilizing a 30-ton truck.

The approximate coordinates of the current soil explorations, the approximate elevations, and depths are included in Table 1. The approximate soil boring and CPT locations are also shown on Figure 2 – Site Layout, Boring and CPT Location Map.

Bulk, driven ring-type, and small bag samples were retrieved at selected depths during drilling of the exploratory borings. Standard Penetration Testing (SPT) was performed using an SPT sampler driven by an automatic 140-pound hammer with a drop of 30 inches in general accordance with ASTM D1586. The hammer calibration record indicated an energy transfer ratio of 81 percent. Ring-type samples were collected utilizing a California-type sampler driven by the same equipment used for the SPTs. Sampling was carried out at 2.5-foot intervals at all the borings between the depths of 2.5 and 20 feet. Otherwise sampling was carried out at 5-foot intervals. Selected soil samples for environmental screening were also taken at selected intervals as described in the environmental report.

The soil borings were surface-logged by a California Professional Geologist in general accordance with the visual-manual procedure for description and identification of soils, ASTM D2488. The Geologist prepared the recovered samples for subsequent reference and laboratory testing. The soil boring logs are presented in Appendix A.

CPT testing was carried out in accordance with ASTM D5778. The piezocone was pushed at a rate of 2 cm/sec and the soil tip resistance, soil-sleeve friction, and immediate dynamic pore water pressure response were recorded at 1-inch intervals. A copy of the Cone Penetration Test Data report is included in Appendix B.

At the completion of drilling, the borings and the CPTs were backfilled with a bentonite cement grout in accordance with LACDPH requirements. The exploratory boreholes and CPTs advanced through paved surfaces were capped with a cold asphalt patch.

Soil cuttings from the borehole explorations were stored in steel drums and disposed of at an appropriate facility.

CFT and Dorenoie Information						
Exploration Number	Northing	Easting	Approximate Depth (ft)	Approximate Top Elevation (ft MSL)*		
B-1	33.80947	-118.28471	51.5	25		
B-2	33.80901	-118.28451	31.5	25		
B-3	33.80851	-118.28358	51.5	27		
B-4	33.80823	-118.28423	31.5	26		
B-5	33.80891	-118.28371	31.5	28		
C-1	33.80944	-118.28475	50.0	25		
C-2	33.80849	-118.28351	50.0	27		
C-3	33.80854	-118.28382	50.0	27		
C-4	33.80805	-118.28375	50.0	26		
C-5	33.80846	-118.28424	50.0	26		
C-6	33.80887	-118.28408	50.0	26		
C-7	33.80907	-118.28468	50.0	25		
*Estimated from Google Earth						

Table 1CPT and Borehole Information

5. LABORATORY TESTING

Laboratory tests were performed by Tetra Tech on selected samples recovered from the soil borings to aid in the classification of soils and to evaluate pertinent engineering properties of the soils at the site. The following tests were performed:

- Moisture Content of Soil, ASTM D2216;
- Density of Soil Specimens, ASTM D7263;
- Particle Size Analysis of Soils, ASTM D422;
- Atterberg Limits, ASTM D4318;
- Percent Passing #200 Sieve, ASTM D1140;
- Consolidation, ASTM D2435;
- Expansion Index, ASTM D 4829;
- Direct Shear Testing, ASTM D3080;
- Corrosion Testing in Soils: pH and resistivity, CTM 643; Sulphates, CTM 417; and Chlorides, CTM 422.

Results of all laboratory tests are presented in Appendix C. For ease of referral to the soil profile, most of the laboratory results have also been included on the boring logs in Appendix A.

6. SUBSURFACE CONDITIONS

6.1. Regional Geology

The subject site is located in the southwestern coastal plain of the greater Los Angeles Basin. The Los Angeles Basin is located within Peninsular Ranges geomorphic province which is characterized as a low-lying plain that rises gently inland to the surrounding mountains and hills including the Santa Monica and San Gabriel Mountains to the north, Puente Hills to the northeast, the Santa Ana Mountains to the Southeast, and the San Joaquin hills and Palos Verdes Peninsula to the south. The Peninsular Range is characterized by northwest-southeast trending structural blocks separated by northwest-southeast trending strike-slip faults.

Within the Los Angeles Basin there are 4 structural blocks: the southwestern block, the northwestern block, the central block, and the northeastern block (Norris and Webb, 1990). The subject site is located in the southwestern block, which is bounded by the Newport Inglewood - Rose Canyon fault zone to the east northeast and the Palos Verdes fault zone to the southwest. The main structural features of the southwestern block are the anticlinal Palos Verdes Hills that have been raised along the steeply dipping Palo Verdes reverse fault, several anticlinal ridges in the basement rocks over which younger sediments have been deposited, and intervening broad synclines. The anticlinal structures of the younger rocks have formed important traps for petroleum and natural gas within the region. The basement rocks of the southwestern block exposed in the Palos Verdes Hills, consist dominantly of green chlorite and blue glaucophane metamorphic rocks of the Catalina Schist that are late Jurassic to late Cretaceous in age. The overlying younger sediments are upper Pliocene to Holocene in age. The uppermost Holocene-age deposits are mapped as alluvial materials consisting of clay, silt, and sand (Dibblee, 1990).

6.2. Site Geology

The subject site is located within the southern portion of the northwest-trending coastal plain, locally recognized as the Torrance Plain (Poland and Piper, 1956). The Torrance Plain rests between the El Segundo Sand Hills and the Palos Verdes Hills in the west and southwest, the Rosecrans Hills and Dominguez Hills in the northeast, and the Dominguez gap to the east. The Torrance Plane consists of elevated older alluvium, which is covered, locally, with moderately dense silty sand of older eolian wind-blown deposits (Dibblee, 1990). Toward the San Pedro Shelf (Los Angeles Harbor), the Torrance Plain is incised and filled with younger alluvium deposits that are generally soft made of locally derived sand, silt, and clay, and with soft deposits associated with shallow marsh and bay sediments.

Based upon the findings from our subsurface investigation, the project site is mantled by artificial fill soils which were encountered across the entire site. Beneath the fill, mostly alluvium and some isolated shallow organic marsh sediments were encountered in the exploratory borings to the maximum explored depth of 51.5 feet. Locally, these alluvial deposits are classified as near shore alluvial and marsh type deposits. Generalized descriptions of the encountered deposits are provided below.

6.2.1. Artificial Fill

Artificial fill soils were encountered in all the borings to depths ranging from approximately 4 to 9 feet. The artificial fill soils were typically composed of medium dense, brown to dark olive gray silty sand and clayey sands, stiff, dark gray to black lean clay and, light yellowish brown very stiff silt, containing traces of roots, wood fragments, gravel and brick fragments.

6.2.2. Native Alluvium

Native alluvial (Qa) soils were encountered below the fill soils to the maximum explored depth of 51.5 feet below the ground surface. The native alluvium consisted of fine-grained (clay) and coarse-grained (sand) soils. The fine-grained materials consisted of light gray to olive brown to gray brown to black lean clay to silt and fat clay. The coarse-grained materials consisted of light yellowish brown to brown to olive brown to gray brown silty sand and poorly graded sand. The coarse-grained soils were generally found at a depth ranging from 22 to 25 feet below the ground surface throughout the subject site.

In addition, a 2.5 feet thick layer of dark brown to black organic lean clay was observed in B-5 a depth between 9.5 and 12 feet. Ring and SPT blow counts within the organic clay layer indicate firm to very stiff consistency. The organic clay layer was observed to have visible organic matter with a strong organic odor, suggesting deposits associated with shallow-water marsh or quagmire sediments.

SPT blowcounts in the native alluvium for the fine-grained (clay) soils generally varied from 8 to 19 indicating stiff to very stiff consistency. SPT blowcounts in the native alluvial coarse-grained (sandy) soils generally varied from 19 to greater than 50 indicating medium dense to very dense materials. Detailed descriptions of the soil conditions encountered in the borings are presented on the boring logs in Appendix A.

6.3. Groundwater

According to the State of California (CDMG, 1998), the historic high groundwater level near the site has been mapped at a depth of about 10 feet (Figure 4 – Historic High Groundwater Map). Groundwater was encountered in the Tetra Tech exploratory borings at a depth of approximately 42 to 44.1 feet.

A review of the database from the Los Angeles County Department of Public Works (LACDPW) for nearby wells (http://dpw.lacounty.gov/general/wells/) and Geotracker database is summarized in Table 2.

Groundwater Wells in the Vicinity of the Site					
Well Identification	Monitoring Period	Location relative to the	Shallowest depth		
		site			
Geotracker Well cluster WDR100001437–	July 2011 to	approximately	37.2 feet		
MW-7, MW-6, MW-10, and MW-12	April 2014	within the site	in 2014		
Geotracker Well cluster WDR100001437-	July 2011 to	across the street	38 feet		
MW-2 to MW-6, MW-8, MW-9, and MW-	April 2014		in 2013*		
11, and MW-12	April 2014	to the west	III 2013		
Inactive LACDPW Well ID 829M State #	April 1964 to	0.28 miles to the	74.7 feet		
4S13W19J06	October 1993	east	in April 1993		
Inactive LACDPW Well ID 829 State #	August 1934 to	0.35 miles to the	67.2 feet		
4S13W19J02	April 1996	northeast	in March 1937		
LACDPW Well ID 310C State #	September 1934 to	0.52 miles to the	59.4 feet		
4S13W30G01	January 2010	southeast	in February 1939		
• Well data indicates a minimum groundwater depth of 33.5 feet in 2013 although this data point is likely to be anomalous since it is a single spike in one month in a sequence of measurements that indicate that the groundwater depth around that time was consistently at around 38 feet					

Table 2

Based on the assessment of the local stratigraphy and local topography, it is our opinion that the LACDPW and the Geotracker wells can be utilized for interpretation of the project groundwater conditions. Therefore, it is our conclusion that the groundwater at the site has been deeper than about 35 feet within the last 50 years.

Fluctuations of the groundwater level, localized zones of perched water, and increased soil moisture content should be anticipated during and following the rainy season. Irrigation of landscaped areas on or adjacent to the site can also cause a fluctuation of local groundwater levels. Evaluation of such factors is beyond the scope of our services.

Based on the research and observed conditions, groundwater is not expected to impact the construction of the proposed development, however the historic high groundwater depth of about 10 feet should be considered for the design process, and the proposed structures should be designed for the corresponding hydrostatic lateral and hydraulic uplift forces.

7. ENGINEERING SEISMOLOGY AND GEOLOGIC HAZARDS

7.1. General Seismic Setting

The Southern California region is known to be seismically active. Earthquakes occurring within approximately 60 miles of the site are generally capable of generating ground shaking of engineering significance to the proposed construction. The project area is located in the general proximity of several active and potentially active faults, as shown on Figure 5 – Regional Faults and Seismicity Map. Active faults are defined as those that have experienced surface displacement within the Holocene period (approximately the last 11,000 years).

Active faults within approximately 10 miles of the subject site include the Newport-Inglewood fault zone located 4.8 miles northeast of the site, the Palos Verdes fault located approximately 2.1 miles southwest of the site, the THUMS-Huntington Beach fault zone located approximately 5 miles southeast of the site, and the Redondo Canyon Fault located approximately 6.6 miles to the west of the site and the Los Alamitos fault located approximately 9.2 miles northeast of the site. The San Andreas Fault is located about 48.7 miles to the northeast of the site. An inferred trace of the potentially active Charnock fault, which trends sub-parallel to the northwest-trending Newport-Inglewood fault zone, is mapped approximately 9.5 miles to the north northwest of the subject site. The Charnock fault has no record of historic earthquakes but shows evidence of displacement during late Quaternary time (Jennings, 2010).

Table 3 lists selected principal known active faults that may affect the subject site and the maximum moment magnitude (M_{max}) as published by Cao et al. (2003) for the California Geological Survey (CGS). The approximate distance to the site were calculated from Jennings (2010).

Superimposed on the area map in Figure 5 are earthquake epicenters recorded by the USGS between 1900 to present day. A large amount of seismic activity and associated events with their epicenters have been recorded surrounding the project site. However, only relatively few earthquake epicenters have been recorded in the immediate area of the subject site. Notable historic earthquakes in Southern California of significance to the project include:

- 1994 magnitude M6.7 Northridge earthquake on a blind thrust fault (low angle fault that is • not expressed at the ground surface) [Epicenter location: 34.21°N, 118.54°W];
- 1987 magnitude M5.9 Whittier Narrows earthquake on Puente Hills Blind Thrust Fault • [Epicenter location: 34.06°N, 118.08°W];
- 1971 magnitude M6.4 San Fernando earthquake which occurred on the San Fernando Fault • (of the Sierra Madre system) [Epicenter location: 34.42°N, 118.37°W];
- Two 1941 magnitude M4.8 Torrance-Gardena earthquakes which occurred on the Palos Verdes Fault [Epicenter locations: 33.82°N, 118.22°W and 33.78°N, 118.25°W];
- 1933 magnitude M6.4 Long Beach earthquake on the Newport-Inglewood Fault [Epicenter location: 33.63°N, 118.00°W];
- 1857 magnitude M7.9 Fort Tejon earthquake on the south central segment of the San Andreas Fault [Epicenter location: 35.43°N, 120.19°W].

Table 3 Principal Active Faults					
Fault Name	Approximate Fault Distance to Site ¹ (miles)	Maximum Moment Magnitude ² (Mmax)			
Palos Verdes	2.1	7.3			
Cabrillo	4.6	6.8			
Newport-Inglewood	4.8	7.1			
THUMS-Huntington Beach	5.0	7.0			
Redondo Canyon	6.6	6.5			
Los Alamitos	9.2	6.2			
Charnock	9.5	6.5			
Puente Hills Blind Thrust	12.5	7.1			
Whittier	18.6	6.8			
Santa Monica	18.8	6.6			
Hollywood	20.2	6.4			
Raymond	21.1	6.5			
Verdugo	23.2	6.9			
Malibu Coast	26.7	6.7			
Anacapa-Dume	27.2	7.5			
Sierra Madre	27.7	7.2			
San Andreas	48.7	7.8			
Notes: ¹ per Jennings, 2010 ² per Cao, et al., 2003	·				

The most significant historic earthquake near the project site was the 1933 Long Beach earthquake.

Potential seismic sources of significance to the project include active faults previously described and faults that are not known to break the ground surface but are considered active. This latter group of faults includes buried or "blind" thrust faults. Current tectonic models for the Los Angeles basin include the presence of buried thrust faults, several of which are considered partly responsible for the north-to-south compression of the basin. Although these faults are not currently zoned by the State of California for surface rupture hazards (Earthquake Fault Zones), many are considered capable of generating seismic shaking of significance to structures.

Of these buried active faults the closest to the site is the Puente Hills Trust Fault (PHTF). The PHTF is currently defined as 3 separate but juxtaposed, generally east-west trending and northdipping, fault surfaces that combined extend from Downtown Los Angeles to Brea. From west to east these include the Los Angeles, Santa Fe Springs, and Coyote Hills segments. Based upon recent studies by several researchers, including: Shaw et al., (2002), Olsen and Cooke (2005), and

Leon et al. (2007), the three fault surfaces are interpreted to extend from depths in excess of 9 miles on the north side of the Los Angeles basin to less than 1.2 miles at the southerly limits of the fault surfaces in the central portion of the basin. Fault surface geometries are interpreted from historical petroleum exploration data, limited geotechnical subsurface exploration data, and limited seismicity (i.e.; the 1987 magnitude 5.9 Whittier Narrows earthquake).

Leon et al. (2007) estimates that upwards of 60 percent of the total Los Angeles basin compression may be attributed to strain along the PHTF. Although ground rupture has not been officially attributed to the fault, the presence of youthful hills (e.g., Coyote Hills) and shallow folding at depth in the upper portion of the interpreted thrust ramp suggests recent activity. The PHTF is considered capable of generating earthquake magnitudes up to about M_w 7.0.

7.2. Surface Fault Rupture

Official Maps of Earthquake Fault Zones were reviewed to evaluate the location of the project site relative to active fault zones. Earthquake Fault Zones (known as Special Studies Zones prior to 1994) have been established in accordance with the Alquist-Priolo Special Studies Zones Act enacted in 1972. The Act directs the State Geologist to delineate the regulatory zones that encompass surface traces of active faults that have a potential for future surface fault rupture. The purpose of the Alquist-Priolo Act is to regulate development near active faults in order to mitigate the hazard of surface fault rupture.

The site is <u>not located</u> within a designated Earthquake Fault Zone for fault surface rupture hazard. Based on a review of State of California Earthquake Fault Zone maps, the closest zoned faults for surface rupture are both within the Newport-Inglewood Zone Fault: one zoned fault is located approximately 4.7 miles northeast of the site and is mapped within the Torrance Quadrangle (CDMG, 1986), and the other zoned fault is located approximately 5.4 miles east of the site and is mapped within the Long Beach Quadrangle (CDMG, 1986).

No surface traces of any active or potentially active faults are known to pass directly through or project towards the site. Neither our field exploration nor literature review disclosed an active fault trace projecting to the ground surface in the project area. Therefore, the potential for surface rupture due to faulting occurring beneath the site during the design life of the proposed development is considered low.

7.3. Seismic Hazard Zones

Maps of seismic hazard zones are issued by the California Geological Survey (CGS, formerly California Department of Conservation, Division of Mines and Geology (CDMG)) in accordance with the Seismic Hazards Mapping Act enacted in April 1997. The intent of the Seismic Hazards Mapping Act is to provide for a statewide seismic hazard mapping and technical advisory program to assist cities and counties in developing compliance requirements to protect the public health and safety from the effects of strong ground shaking, liquefaction, landslides, or other ground failure and other seismic hazards caused by earthquakes.

Based on the review of the Torrance Quadrangle Official Map of Seismic Hazard Zones issued March 25, 1998 (see Figure 6), the proposed development <u>is located</u> within an area identified by the State of California as subject to the hazard of liquefaction. Because the site is located in a mapped area where the potential for liquefaction exists and due to the increase in the code-prescribed seismic demand since the Seismic Hazard Map was generated, a field investigation and analyses were performed to evaluate the site liquefaction potential per the 2013 CBC.

7.4. Liquefaction Potential and Dynamic Settlement

Liquefaction of soils can be caused by ground shaking during earthquakes. Research and historical data indicate that loose, relatively clean granular soils and low plasticity silts are susceptible to liquefaction and dynamic settlement, whereas the stability of the majority of clayey silts, silty clays and clays are not typically adversely affected by ground shaking. Liquefaction is generally known to occur in saturated or near-saturated cohesionless soils at depths shallower than about 50 feet.

7.4.1. Soil Description

Evaluation of liquefaction potential for the on-site materials was performed based on soil stratigraphy encountered in the field explorations. The encountered soil materials generally consisted of alluvial deposits made up of layers of medium dense to dense silty and clayey sands interspersed with layers of stiff to very stiff lean and fat clays.

Materials that are above the groundwater table are not considered susceptible to liquefaction according. Thus, the focus of this investigation was aimed at evaluating the liquefaction potential of the soils encountered at a depth between 10 and 50 feet. Fine grained soils as described in the following sections can undergo severe strength loss during ground shaking, and thus an evaluation of their sensitivity was performed.

7.4.2. Groundwater Level for Liquefaction Analysis

Groundwater was encountered during the field explorations at a depth ranging between 42 to 44 feet. The historic high groundwater at the site was mapped by CDMG (Torrance Quadrangle) at a depth of about 10 feet. Therefore, a groundwater depth of 10 feet was assumed for evaluation of liquefaction potential at the site.

7.4.3. Liquefaction Seismic Demand

Based the USGS U.S. Seismic Maps website application on Design (http://earthquake.usgs.gov/designmaps/us/application.php), for a site with coordinates 33.80847°N, -118.28369°W, the mapped Geometric Mean Peak Ground Acceleration (PGA_M) was estimated to be approximately 0.647g for a site class D (assumed $v_s = 300$ m/s), for a ground motion corresponding to the Maximum Considered Earthquake (MCE). From the Seismic Hazard Interactive Deaggregation website (https://geohazards.usgs.gov/deaggint/2008/) this ground motion approximately corresponds to a predominant earthquake magnitude of M_w 7.38 located at a distance of approximately 5 km (3.1 miles). These ground motion parameters were used in the liquefaction analyses.

7.4.4. Evaluation of Liquefaction Potential and Sensitivity Analyses

The liquefaction potential of cohesionless (sandy) soils was evaluated based on the SPT blowcounts and laboratory test results utilizing procedure published in Youd and Idriss (2001) consensus publication on liquefaction evaluation, and as recommended in the County of Los Angeles Administrative Manual, Liquefaction/Lateral Spreading/GS045.0 dated October 6, 2014.

The analyses based on standard penetration test (SPT) considered the energy ratio correction factor C_E of 1.35. This ratio is based on a calibrated hammer efficiency of approximately 81 percent as supplied by the drilling contractor, which is consistent with our experience with similar equipment. The blowcounts recorded for soils driven with the 3-inch O.D. California Sampler with brass rings were converted to an equivalent SPT blowcounts using a reduction factor of 0.67. Borehole diameter correction factor C_B of 1 based on the internal diameter of the hollow stem auger system used for the drilling was utilized in our liquefaction evaluation.

Results of liquefaction analyses of granular soils are summarized in Table 4 in the next section of this report and presented in Appendix F. The analyses based on SPT data indicated that the onsite granular soils found at depth intervals between 15 and 20 feet and between 30 and 35 feet are susceptible to liquefaction.

The liquefaction potential of the subsurface materials was also evaluated from the CPT data using the computer software CLiq v.2.0.6.97 by Geologismiki. The liquefaction susceptibility and the liquefaction induced settlements were evaluated using the NCEER Youd et al (2001) and Robertson (2009) method. The CPT analyses indicate that there are some layers of materials that behave like silty sands and sandy silts that are susceptible to liquefaction although these layers do not seem to be continuous throughout the site with the exception of a layer seemingly continuous between approximately 38 and 44 feet of depth which was observed in CPTs C-1 through C-5. Results of the liquefaction analysis using CPT data are summarized in Table 4 in the next section of this report and presented in Appendix F.

Seismic sensitivity of fine-grained soils was further evaluated per County of Los Angeles Administrative Manual GS045.0 where the fine-grained soils are classified in the following 3 categories:

- 1. Soils with Plasticity Index < 12 and moisture content > 85 percent of the liquid limit are classified as fine-grained soils susceptible to liquefaction (typically includes silts);
- 2. Soils with Plasticity Index > 18 and a degree of sensitivity $S_t > 6$ are classified as fine-grained soils potentially susceptible to significant loss of strength during seismic shaking and require additional evaluation. The sensitivity of the on-site fine-grained soils is evaluated based on the water content, Atterberg limits, and effective vertical stresses using the procedures suggested by Holtz and Kovacs (1981) and Terzaghi, Peck and Mesri (1996).
- 3. Fine-grained soils falling outside the two categories above are considered to behave like clays and are not considered susceptible to liquefaction or seismic sensitivity.

Analyses of the sensitivity of the saturated fine-grained soils indicated low sensitivity based on the estimated sensitivity ratios of 1.3 to 1.6 as evaluated from Terzagi, Peck and Mesri (1996). The sensitivity was also estimated from the CPT data and indicated that the fine-grained soils at the site ranged between 1 and 2 with most values in the order of 1.5, i.e., significantly less than the accepted sensitivity threshold value of 6. Therefore these soils are not considered to be susceptible to undergo seismically induced deformations. Consequently, the potential for significant loss of strength of fine-grained materials and ensuing bearing failure during seismic shaking is considered low. The results of the sensitivity analyses for the soil borings are included in Appendix F.

Boring No.	Assumed Groundwater Depth (feet)	Liquefiable Zone Depth Interval (feet)	FSliq	Liquefaction Settlement (inches) ¹	Settlement of Dry Sands (inches) ¹	Combined Dynamic Settlement (inches) ¹
B-1		30-35	0.8	0.64	0.02	0.66
B-3		15-20	1.0	0.33	0.04	0.37
C-1		30.7-31.3 36.7-37.3 40.5-42 46-46.5	0.7 0.7 0.5 0.7	1.3	negligible	1.3
C-2		22.5-28 40.5-42	0.4 0.7	1.4	negligible	1.4
C-3	10	20.5-26 40.5-45	0.4 0.3	2.5	0.2	2.7
C-4		22-24.5 38.5-44 46.7-47.3	0.3 0.4 0.5	2.4	negligible	2.4
C-5		18-21.5 24-25 42-44 47-48	0.5 0.5 0.6 0.5	2.5	negligible	2.5
C-6		18-18.5	0.5	0.25	negligible	0.25
C-7		13-18 36.7-37.3 48-50	0.7 0.5 0.5	1.85	0.05	1.9

Table 4				
Results of Liquefaction and Dry Dynamic Settlement Analyses				

7.4.5. Dynamic Settlement

Dynamic settlement can occur in both dry and saturated sands when loose to medium-dense granular soils undergo volumetric changes during ground shaking. Dynamic settlement can occur in saturated sands due to liquefaction or in dry sands due to densification of the soil matrix. The anticipated dynamic settlement of the saturated soils at the site was evaluated using SPT data from the current Tetra Tech exploration using procedures outlined by Tokimatsu and Seed (1987). The

potential for dry dynamic settlement using SPT data was calculated according to the procedure outlined in Pradel (1998a and 1998b). The potential for dry dynamic settlement using CPT data was evaluated using the computer software CLiq v.2.0.6.97 according to the procedure outlined in Robertson and Shao (2010). Table 4 above presents the results of liquefaction analyses and dry dynamic settlement. The details of dynamic settlement analyses are presented in Appendix F.

As shown in Table 4, the combined dynamic settlement of the on-site soils was estimated to be less than 2.5 inches at the ground surface. The seismic differential settlement is estimated to be no greater than 1.3 inches over a horizontal distance of 30 feet. Therefore structural mitigation of the total and differential settlement is acceptable at this site.

It is noted that although the magnitude of the estimated dynamic settlements corresponds to an mean estimated settlement which can vary in the order of +- 50 percent, the standard of practice uses mean estimated values in developing guidelines and evaluating potential damage to structures.

7.5. Earthquake-Induced Landslides

The site is not located in an Earthquake-induced Landslide Hazard Zone on the State of California Seismic Hazard Zones Map (see Figure 6). No evidence of landsliding was observed on or in the immediate vicinity of the site. Therefore the occurrence of an earthquake-induced landslide at the site is not considered to be hazard to the site.

7.6. Tsunami Risk

Based on the review of the Torrance Quadrangle/San Pedro Quadrangle, Tsunami Inundation Map issued March 1, 2009 by the California Geological Survey, the site is not located within an area that is mapped as tsunami inundation area. The nearest mapped tsunami inundation area is about 2.5 miles to the south of the site. Therefore a tsunami is not considered to be a potential seismic hazard to the site. Due to the lack of known occurrences of tsunamis in the historical records, the map does not include information about the probability of any tsunami affecting the site within a specific period of time.

7.7. Subsidence

Land subsidence is the lowering of the ground surface due to extraction or lowering of water levels or other stored fluids within the subsurface soil pores, or due to seismic activity. Groundwater withdrawal causes the alluvial sediments in the basin to compact. Fine-grained materials such as clays and silts that comprise the aguitard that separates the Upper and Lower aguifers in the east valley are more susceptible to compaction and subsidence than coarse-grained sediments, such as sands when groundwater is removed. Damage caused by subsidence can be visible cracks, fissures, or surface depression.

The historic withdrawal of oil has been known to cause subsidence in portions of the Torrance, Dominguez, and Wilmington oil fields, which are located within close proximity of the subject site. This subsidence region extended along the Newport-Inglewood structural zone between

Signal Hill and the Port of San Pedro on the south and Redondo Beach on the north. Total subsidence reached a maximum of 29 feet over the crest of the Wilmington anticline, where most of the oil had been withdrawn. There is no documented ground subsidence associated with oil fields prior to development of the region. By the early 1980s, water injection halted subsidence at the oil fields and, subsequently, no further subsidence has been since documented. Therefore subsidence is not considered a hazard at this site.

8. DESIGN RECOMMENDATIONS

8.1. General

Based on the results of the field exploration and engineering analyses, it is Tetra Tech's opinion that the proposed construction is feasible from a geotechnical standpoint, provided that the recommendations contained in this report are incorporated into the design plans and implemented during construction. It is expected that conventional foundation and construction methods will be suitable for the proposed improvements.

Observations and laboratory tests indicate that the on-site soils have negligible levels of watersoluble sulfates, therefore, the soils are not expected to cause injurious sulfate attack on concrete with a minimum 28-day compressive strength of 2,500 psi.

Observations and laboratory tests indicated that the on-site soils have a broad range of expansion potential ranging from medium for clays in boring B-3 to an extremely high expansion potential (EI value of 281) for a sample at 12.5 feet in boring B-5. Consequently, potential for some postconstruction expansion-related effects does exist.

The key geotechnical design focus will be on:

- Mitigation of the effects of the on-site expansive soils;
- Excavation and shoring design;
- Foundation design of the subterranean structures.

The design recommendations presented below reflect these considerations.

The design recommendations presented below are based on Tetra Tech's current understanding of the project. Once the project configuration is finalized and the design is complete, Tetra Tech should review the plans and specifications to evaluate if the geotechnical design recommendations have been incorporated as intended.

8.2. Clearing and Grubbing

The construction area should be cleared of any pavement, structures, vegetation, trash and debris, prior to commencement of the earthwork. Any subterranean installations not to be preserved, such as pipes, utility collectors, tanks, older foundations, etc., should be abandoned and removed per Geotechnical Engineer's recommendations and in accordance with applicable regulations. All undocumented fills including the existing landscape fill mounds and other unsuitable materials within the construction areas should be removed.

8.3. Site Preparation

In order to create uniform bearing conditions for the proposed improvements the following is recommended:

- Underground storage tank and pump station vault should be founded on competent native soils. No need for overexcavation is expected for the foundations located at the anticipated invert depth of about 20 feet, unless loose/soft unsuitable conditions are encountered as discussed below.
- Pump station building foundation and floor slab area should be overexcavated and recompacted to a depth of at least 2.5 feet below the bottom of the foundation or floor slab, 3 feet below the existing grade, or to competent native soils, whichever is deeper. To the extent practicable, the zone of overexcavation should extend outside the perimeter of the building area for a horizontal distance of at least 3 feet, but not less than a distance equivalent to the depth of overexcavation below the foundation bottom.
- Lightly loaded ancillary structures areas should be overexcavated to a depth of at least 2 feet below the bottom of the proposed footing or floor slab or to competent native soils, whichever is deeper. The excavation should extend a horizontal distance of at least 2 feet beyond the outside perimeter of the structure.
- Pavement areas and flatwork areas should be overexcavated and recompacted to a depth of at least 1 foot below the proposed subgrade elevation, or to uniform acceptable soils, whichever is deeper. To the extent practicable, the zone of overexcavation should extend a horizontal distance of at least 2 feet beyond the outside perimeter of the pavement.
- In non-structural/landscaped areas, any existing fill may remain in place. However, depending ٠ on the future use of the area, existing fill may need to be excavated and replaced as compacted fill. This can be evaluated during grading.
- Disturbed soils at structural and non-structural areas will likely occur after demolition of existing site improvements. These soils should be overexcavated and recompacted to the total depth of the disturbed material.

The exposed overexcavation subgrade for all structures and slabs, should be probed and accepted by the Geotechnical Engineer. The soils should be scarified to a depth of 4 inches and compacted at a minimum of 125 percent of optimum moisture content to at least 90 percent of the maximum dry density, as evaluated by the latest version of ASTM D1557.

Localized zones of loose and/or unstable soils may be encountered during the grading operations at the subgrade level and should be overexcavated and recompacted. If loose/soft/wet areas are encountered that are not practical to be excavated and processed. Table 5 below provides options for stabilizing the subgrade. The objective is to produce at least 3 feet for foundations and 2 feet for pavements of competent fill to bridge over the impacted area. The specific type of remediation and associated area limits will need to be evaluated in the field by a representative of Tetra Tech.

All fill placement associated with the replacement of the overexcavated soils, fill placed to achieve finish grade or subgrade, or utility trench backfill should be moisture-conditioned to at least 125 percent of the optimum moisture content and compacted to at least 90 percent of the maximum dry density, as evaluated by the latest version of ASTM D1557. The upper 1 foot of soils below

pavements and any flatwork should be processed and compacted to at least 95 percent of the maximum dry density (per ASTM D1557).

Excavated on-site soils may be re-used as compacted fill provided they are free of organics, deleterious materials, debris and particles over 3 inches in largest dimension. Locally, particles up to 6 inches in largest dimension may be incorporated in the fill soils based on specific approval and placement recommendations provided by the Geotechnical Engineer of Record during grading.

T

Table 5					
Conceptual Options for Handling Unstable Materials at the Excavated Subgrade					
Areas where the soils are soft and/or unstable at the excavation subgrade	 Overexcavate at least 3 feet for foundations, 2 feet for pavement areas Stabilize the soft subgrade by working open-graded aggregate material (typically 3/4" or 1.5" crushed rock, coarser for softer subgrade) at least 4 to 6 inches into the soil. Place non-woven geotextile, Mirafi 180N or approved equivalent, over the stabilized subgrade. Place and compact well-graded fill (e.g., AB, CMB) or general approved backfill material to specified compaction over the geotextile. 				
<u>Larger</u> areas where the soils are <u>excessively</u> soft and/or unstable	 Overexcavate at least 3 feet for foundations, 2 feet for pavement areas Improve the soft subgrade by working in open-graded aggregate material as much as possible/practical into the subgrade. Place non-woven geotextile, Mirafi 180N or approved equivalent, over the exposed soil. Place at least 8 inches (12-18 inches preferred) of well graded aggregate material (e.g., AB, CMB); only reasonably achievable compaction is required. Place non-woven geotextile, Mirafi 180N or approved equivalent, over the aggregate layer. Place and compact fill to specified compaction over the geotextile. 				

In the event that any soil materials (including backfill or base course materials) are imported to the site, such soils should be sampled, tested, and approved by Tetra Tech prior to arrival on-site. In general, any soils imported to the site for use as fill should be predominantly granular and have an Expansion Index less than 30. Additional recommendations for site grading are provided in the "General Site Grading Recommendations" section of this report.

8.4. Temporary Slopes and Trench Excavations

The on-site soils are not expected to pose unusual excavation difficulties, and therefore, conventional earth-moving equipment may be used. Localized sloughing/raveling of exposed soil intervals should be anticipated. All trench excavations should be performed in accordance with

Cal-OSHA regulations. The on-site soils may be considered Type C soils to a depth of 8 feet, and Type B from 8 feet to a depth of 20 feet as defined by the current Cal-OSHA soil classification.

<u>Unsurcharged excavations</u>: Sides of temporary, unsurcharged excavations less than 8 feet deep should be sloped back at an inclination of 1.5(H):1(V) or flatter according to Cal-OSHA. For excavations that extend beyond a depth of 8 feet, the upper 8 feet should be sloped at 1.5(H):1(V) or flatter and the reminder of the excavation below a depth of 8 feet should be sloped at a 1(H):1(V) or flatter. For Type B soils below a depth of 8 feet, benching could be used as long as the overall slope below 8 feet is kept at an inclination of 1(H):1(V) or flatter, however the bottom vertical height of the trench must not exceed 4 feet and the subsequent benches cannot be higher than 5 feet. Where space for sloped sides is not available, shoring will be necessary. All excavations where the bottom vertical height of the trench exceeds 4 feet must be shielded to a height of at least 18 inches above the top of the vertical side.

This office can provide appropriate shoring recommendations, once the excavation layout is known.

<u>Surcharge setback recommendations</u>: Stockpiled (excavated) materials should be placed no closer than 4 feet from the top of the trench. A greater setback may be necessary when considering surcharge loads such as heavy vehicles, concrete trucks and cranes. Tetra Tech should be advised of such heavy vehicle loadings so that specific setback requirements can be established for the used equipment. Alternatively, a shoring system may be designed to allow reduction in the setback distance.

Personnel from Tetra Tech should observe the excavation progress so that appropriate modifications to the excavation design may be recommended, if necessary, due to encountered conditions differing from the design assumptions.

8.5. Temporary Shored Excavations

Significant excavation is required for the construction for the proposed 13-acre-foot storage tank with a footprint area of approximately 1.5 acre with foundations and associated piping anticipated at a depth of about 20 feet. At these depths the use of a simple cantilevered shoring is not likely to be feasible and a shoring system assisted by tiebacks and/or soil nail wall with shotcrete facing may be necessary for the temporary support of the excavation in areas where not enough space is available for slope cuts at the inclinations indicated above. Presented herein are preliminary design recommendations for the recommended shoring systems, including a cantilevered system, based on the information available at this time. We can furnish specific design recommendations as the design progresses, if requested. The designer will need to take into account the likelihood of encroaching outside the property limits and the need to account for the presence of utilities, conduits, and other underground structures that may affect the design and installation of the shoring system.

All components of the shoring system, including the penetration depth, should be designed by a specialist Registered Civil Engineer in the State of California and should further satisfy requirements of Cal-OSHA. It is recommended that all shoring designs be reviewed by the

Geotechnical Engineer of Record. The following recommendations are based on the assumption that groundwater remains below the excavation bottom, and the face of the shoring is not subject to hydrostatic forces within the retained soils.

8.5.1. Soldier Pile and Lagging Wall System

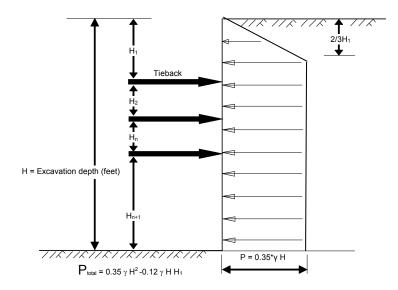
Temporary soldier pile and lagging shoring system may be used to facilitate the proposed excavation. Tiebacks are usually required for excavation depths greater than about 15 feet. Alternate measures may be considered that would allow for elimination of the tiebacks such as installation of rakers, partial lowering of the grade just outside the excavation, or use of oversized soldier pile beams. If there is not sufficient space to install the tieback anchors to the desired lengths on any side of the excavation, the soldier piles of the shoring system may require internal bracing.

The soldier pile and lagging system would consist of steel soldier piles placed in drilled holes, backfilled with concrete, and restrained with tiebacks. Continuous timber lagging or steel plates may be used between the soldier piles. Because groundwater fluctuations outside the underground storage tank are possible, the timber lagging should be removed at the time of backfilling.

8.5.1.1. Soldier Pile Wall Design

Table 6 below summarizes the governing geotechnical design parameters and loading diagrams for a cantilevered and tieback-supported soldier pile wall shoring system. These values are based on the assumption that (1) the shored soil grade is level at the ground surface, (2) there are no hydrostatic pressures above the bottom of excavation, and (3) the shoring is temporary.

Any surcharge (live or dead load) located within a 1(H):1(V) plane drawn up from the base of the shoring should be added to the lateral earth pressures. For the soldier pile wall systems, the lateral contribution of a uniform surcharge load beginning immediately behind the wall and extending a horizontal distance equal to at least the retained height, may be calculated by multiplying the surcharge by a factor of 0.42. This uniform lateral load, i.e., independent of depth, should be applied as a minimum throughout the whole exposed height of the soldier pile wall. As a minimum, a 2 feet of equivalent uniform soil surcharge, i.e., 240 psf, is recommended to be included to account for nominal construction surcharge. This office can provide recommendations for other surcharge configurations, if requested.


To resist the lateral loading on shoring, the necessary depth of penetration of isolated soldier piles below the excavation bottom can be calculated based on the passive soil resistance provided in Table 6. Passive resistance should be ignored for the upper 12 inches below excavation bottom to account for potential near-surface soil disturbance. The passive resistance of individual soldier piles in Table 6 was increased to account for soil arching and factored by a Factor of Safety of 1.5. The provided value is applicable for soldier piles that are spaced no closer than 1.9 pile widths/diameters. For closer spacing the passive resistance would need to be reduced.

Development of hydrostatic pressures is not anticipated based on the current groundwater conditions and if irrigation is limited as recommended later in this report.

Table 6
Temporary Soldier Pile Wall with Tieback Anchors with No Hydrostatic Pressure
Geotechnical Design Parameters

Excavation bottom depth	Up to ~20 feet		
	Alluvial Soils		
Subsurface materials	Mostly very stiff lean and fat clays		
	(materials to ~20 feet below existing grade) For cantilevered For restrained		
SHORING SYSTEM	shoring systems	shoring systems Soldier pile tieback wall – single level of tiebacks – multiple levels of tiebacks	
Soil unit weight, γ	125	pcf	
Design friction angle, ϕ	24°	0°	
Design cohesion, c	0 psf	1,800 psf	
Stability number, Ns = $\frac{\gamma \cdot H}{c}$	n/a	1.3	
ACTIVE F	PRESSURE		
Ka coefficient of active lateral pressure	0.42	n/a	
Equivalent fluid density, EFD	53 pcf	n/a	
ALLOWABLE PAS	SIVE PRESSURE		
Arching capability *	1.	.9	
Kp coefficient of passive lateral pressure	2	.4	
Equivalent fluid density – includes Safety Factor of 1.5 – considers arching			
LOADING D	DIAGRAMS		
Loading Diagram behind the shoring	53 pcf EFD (i.e., triangular distribution)	Trapezoidal load distribution (see Diagram 1 below) based on stability number Ns = 1.3	
Allowable passive resistance for soldier piles below excavation bottom: – includes Safety Factor of 1.5 – considers arching – ignore resistance within the upper 12 inches * Per Caltrans Trenching and Shoring Manual (2011) ** Valid without reduction for soldier pile spacing > 1.9 times the or reduction of the allowable passive pressure for more closely spa	380 pcf EFD ** (i.e., triangular distribution)		

Diagram 1. Trapezoidal lateral pressures loading diagram for cohesive soils for a shoring wall with tiebacks

8.5.1.2. Tieback Design

Friction tieback anchors may be used to resist lateral loads. For design purposes, it may be assumed that the active wedge adjacent to the shoring is defined by a plane drawn at 33 degrees with the vertical through the bottom of the excavation. The tieback bonded zone must not encroach inside the active zone. The unbonded length of the anchor should extend either a minimum of distance of H/5, where H is the height of the wall, or 5 feet behind the surface defined by the active wedge. Only the frictional resistance developed beyond the active wedge would be effective in resisting lateral loads. If the anchors are spaced at least 6 feet on centers, no reduction due to group action in the capacity of the anchors needs to be considered.

It should be specified that all or at least the upper row of anchors be detensioned after completion of the storage tank construction.

Tiebacks are considered to assist with the lateral restraint of the shoring and to reduce soil movement behind the shoring wall. Straight shaft, <u>pressure-grouted</u> tiebacks may be initially designed for an allowable bond stress of 1,550 psf. The allowable bond stress includes a factor of Safety of 2. The allowable bod stress should be verified at the beginning of the construction.

The center of the anchor bond zone should be a minimum of 15 feet below the ground surface. The tieback bond stress may need to be adjusted depending on the tieback depth and grouting method.

8.5.1.3. Tieback Testing

The bond stress and capacities of anchors should be verified by testing during construction. The tieback proof and performance testing program should be in compliance with the latest (4th edition) Post-Tensioning Institute (PTI) guidelines "Recommendations For Prestressed Rock And Soil

Anchors". This office should review and approve the actual testing program and observe and interpret the execution of the testing program.

8.5.1.4. Tieback Installation

The anchors should be installed at angles of 15 to 30 degrees below the horizontal. Caving of the anchor holes at certain locations should be anticipated and provisions should be made available to minimize such caving. The anchors should be filled with grout placed by pumping from the tip out, and the grout should extend from the tip of the anchor to the active wedge. To minimize the potential for caving, we suggest that the portion of the anchor shaft within the active wedge be backfilled with sand before testing the anchor. This portion of the shaft should be filled tightly and flush with the face of the excavation. The sand backfill may contain a small amount of cement to allow the sand to be placed by pumping. For post-grouted anchors the anchor may be filled with grout to the face of the shoring provided the tieback strands are enclosed in plastic sheathing.

8.5.1.5. Deflection

It is difficult to accurately predict the amount of deflection of a shored excavation as it largely depends on the quality of construction. It should be realized, however, that some deflection will likely occur. We estimate that this deflection could be on the order of 1 inch at the top of the shored excavation. If greater deflection occurs during construction, additional bracing or restraint may be necessary to minimize settlement of the nearby improvements. If it is desired to reduce the deflection of the shoring, a greater lateral earth pressure could be used in the shoring design.

8.5.1.6. Construction Staging

The shoring should be constructed utilizing a top-down method of construction whereas the soil is first partially excavated to produce a bench for installation of the topmost row of tiebacks. Following the installation of the tiebacks, the excavation will proceed so that each row of tiebacks can be installed from the excavated bench. In order to continuously support the excavation, tieback installation bench should not be excavated more than 5 feet below the elevation of the centerline of the tieback row. The shoring designer should analyze each stage of tieback installation to ensure that the excavated bench level has an adequate factor of safety.

8.5.1.7. Internal Bracing

Locally, where tiebacks cannot be used, raker bracing may be used to internally brace the soldier pile wall. If used, raker bracing could be supported laterally by temporary concrete footings (deadmen). For design of such temporary footings, poured with the bearing surface normal to the rakers inclined at 45 to 60 degrees from the vertical, a bearing value of 2,000 psf may be used, provided the shallowest point of the footing is at least 1 foot below the lowest adjacent grade. To reduce the movement of the shoring, the rakers should be tightly wedged against the footings and/or shoring system.

8.5.2. Soil Nail Wall

A soil nail wall may be considered an option for support of the proposed excavation for the installation of the underground storage tank. The soil nail wall alternative may be more economical for the +/- 20 feet deep excavations than a soldier pile wall shoring system with tiebacks depending on the actual shoring configuration.

8.5.2.1. Soil Nail Wall Design

Parameters to be used for the initial soil nail wall design are summarized in Table 7 below for the prevailing on-site silty clays for solid bar nails.

Design Parameter	Design Value
Ultimate Bond Stress (for rotary drilled nails)	6 psi
Ultimate Bond Stress (for augered nails)	8 psi
Yield Strength of Reinforcement Steel	60 ksi
Soil Nail Diameter	6 inches

Table 7 f Call Nall Daging Da

This office can provide the design of the soil nail wall, if requested.

8.5.2.2. Soil Nail Testing

Soil nail testing should be performed in accordance with the testing guidelines described in Chapter 9 of the FHWA Geotechnical Engineering Circular No.7 - Soil Nail Walls (FHWA-NHI-14-007) under the oversight of the Geotechnical Engineer.

8.5.2.3. Construction Staging

The soil nail wall construction should be performed using top-down method in multiple stages. In the first stage, the vertical excavation will be cut to allow for construction of the top row of soil nails and the shotcrete facing within the highest section of the wall. In the following stages, the soil will be excavated and soil nails installed and the shotcrete facing applied one row of soil nails at a time. In order to continuously support the excavation, the soil nail installation bench should not be excavated more than 5 feet below the elevation of the centerline of the soil nail row.

In general, it is expected that the conditions of the cut face encountered during construction will be favorable, i.e., no large scale or continuous caving will be encountered. However, this does not eliminate the potential for localized problems in cohesionless zones. If localized caving is encountered, it could be handled by reducing the unsupported height at that installation level and by flash coating the surface with shotcrete.

8.5.3. Shoring Performance Monitoring

Some means of monitoring the performance of the shoring system are recommended. The monitoring should consist of periodic visual inspections and lateral and vertical surveying of the tops of the soldier piles or survey monuments installed on top or behind the soil nail wall. This office can provide further recommendations of the monitoring when the design of the shoring system is being finalized.

8.5.4. Irrigation Control

It is recommended that while the shoring system is being installed and during its temporary operation no irrigation at the park be allowed within a horizontal distance of 20 feet measured from the top of the excavation to minimize possible buildup of pore water pressures.

8.6. Foundations

We anticipate that the proposed underground storage tank and pump station vault will be supported on either on mat foundations, or on pad footings with concrete slab on-grade established on subgrade prepared in accordance with recommendations provided in "Site Preparation" section of this report. Recommendations for the design and construction of shallow foundations are presented below.

8.6.1. Design Parameters for At-Depth Foundations

Foundations for the underground storage tank and the pump station vault located about 20 feet below the existing grade should be designed for the anticipated at-depth soil conditions using the geotechnical design parameters presented in Table 8. Footings should be designed and reinforced in accordance with the recommendations of the Structural Engineer and should conform to the 2013 California Building Code.

At-Depth Continuous and Isolated Spread Footing Foundations					
Continuous Strip Footings					
 At least 1 foot wide but less than 4 feet wide Minimize footing dimensions by maximizing the bearing pressure to confine and reduce the post-construction swelling of the expansive soil Embedded at least 2 feet below the lowest adjacent grade. 					
 Allowable Bearing Capacity 3,200 psf, foundation dimensions so that the bearing pressure is as clear as practicable to 3,200 psf under dead loads. The allowable bearing value may be increased by one-third for transi live loads from wind or seismicity. 					
	Spread Footin	gs or Pads			
Dimensions (feet)	• Up to 4 feet x 4 feet	• Up to 8 x 8 feet	• Up to 15 x 15 feet (e.g., for the pump station vault)		
Depth of Embedment	• At least 2 feet	• At least 2 feet	• At least 2 feet		
	• 4,500 psf	• 4,000 psf	• 3,400 psf		
Allowable Bearing Pressure	• The allowable bearing live loads from wind o	value may be increased b or seismicity.	y one-third for transient		
	All Shallow Fo	oundations			
Estimated Settlement	 Approximately 1-inch Approximately 0.5-inc a distance of 30 feet. 	total settlement. ch differential settlement b	between supports or over		
Allowable Adhesion at the base (incorporates Factor of Safety of 1.5)	 800 psf Adhesion to be multiplied by the contact area as limited per 2013 CBC Section 1806.3.2. 				
Allowable Lateral Passive Resistance (incorporates Factor of Safety of 2)	 200 pcf (EFD) The passive resistance derived of the upper 12 inches should be neglected. 				
Allowable Combined Lateral Resistance	 The total allowable resistance to lateral loads can be calculated by combining the lateral resistance due to adhesion at the base and the lateral passive resistance. The passive resistance values may be increased by one-third when considering transient wind or seismic loading 				
Uplift Capacity	• The weight of the soil that contributes to the uplift capacity can be estimated as a zone defined by an angle of 30 degrees from the vertical projected from the top edge of the footing to the adjacent grade				

Table 8Geotechnical Design ParametersAt-Depth Continuous and Isolated Spread Footing Foundations

8.6.2. Design Parameters for At Grade Shallow Foundations

Shallow foundations for at-grade structures should be designed for the anticipated near surface soil conditions using the geotechnical design parameters presented in Table 9. Footings should be designed and reinforced in accordance with the recommendations of the Structural Engineer and should conform to the 2013 California Building Code.

8.6.3. Footings Adjacent to Trenches

The bottom of any trenches that are required for any buried utilities and piping should be kept outside a zone defined by a 1(H): 1(V) plane projected from the outside bottom edge of any existing or proposed footings. Backfill materials and procedures shall conform to the recommendations provided in the "Site Preparation" and "General Site Grading" sections of this report. If any piping needs to be placed within the zone of influence, the pipes should be designed to account for the increased surcharge from the applied footing pressures and to withstand potential differential settlement between the surcharged and unsurcharged segments of the pipe. Generally, the pipes within the impacted zone should be protected with concrete encasement, utilidors, or other suitable form of protection. This office should be contacted to review any specific utility interaction configurations and their proposed mitigation.

8.6.4. Foundation Construction Observations

To evaluate the presence of satisfactory materials at foundation subgrade, foundation excavations should be observed by a representative of Tetra Tech, and be clean of loosened soil and debris before placing steel or concrete. If soft or loose soils or other unsatisfactory materials are encountered, such materials should be removed and replaced with compacted fill prior to pouring the footing.

Continuous Strip Footings		
Dimensions	 At least 1 foot wide but less than 4 feet wide Minimize footing dimensions by maximizing the bearing pressure to confine and reduce the post-construction swelling of the expansive soils. Embedded at least 2 feet below the lowest adjacent grade. 	
Allowable Bearing Capacity	 2,200 psf, foundation dimensions so that the bearing pressure is as close as practicable to 2,200 psf under dead loads. The allowable bearing value may be increased by one-third for transient live loads from wind or seismicity. 	
Spread Footings or Pads		
Dimensions (feet)	• Up to 4 feet x 4 feet	• Up to 8 x 8 feet
Depth of Embedment	• At least 2 feet	• At least 2 feet
Allowable Bearing Pressure	• 3,200 psf	• 2,600 psf
	• The allowable bearing value may be increased by one-third for transient live loads from wind or seismicity.	
All Shallow Foundations		
Estimated Settlement	 Approximately 1-inch total settlement. Approximately 0.5-inch differential settlement between supports or over a distance of 30 feet. 	
Allowable Adhesion along concrete – soil interface (incorporates Factor of Safety of 1.5)	 800 psf Adhesion to be multiplied by the contact area as limited per 2013 CBC Section 1806.3.2. 	
Allowable Lateral Passive Resistance (incorporates Factor of Safety of 2)	160 pcf (EFD)The passive resistance derived of the upper 12 inches should be neglected.	
Allowable Combined Lateral Resistance	 The total allowable resistance to lateral loads can be calculated by combining the lateral resistance due to adhesion at the base and the lateral passive resistance. The passive resistance values may be increased by one-third when considering transient wind or seismic loading 	
Uplift Capacity	 The weight of the soil that contributes to the uplift capacity can be estimated as a zone defined by an angle of 30 degrees from the vertical projected from the top edge of the footing to the adjacent grade. A total unit weight of 120 pcf may be used for the soil. The lowest depth of embedment from the adjacent grade shall be used in the estimations 	

Table 9Geotechnical Design ParametersShallow Continuous and Isolated Spread Footing Foundations

8.7. Concrete Slab-On-Grade or Mats

The recommendations provided in the "Site Preparation" section of this report and in this section are intended to provide a firm bearing subgrade to help reduce the occurrence of cracks in concrete and associated horizontal separation and vertical offset. However, it should be understood that concrete slabs may still crack due to structural design or detailing, curing, or construction execution even when these recommendations are implemented. If cracking of the concrete is desired to be minimized, the reinforcement, concrete mix, and curing specifications should be designed by the Structural Engineer and Concrete Specialist.

8.7.1. Structure Floor Slab-On-Grade or Mats

Structure floor slab-on-grade and mat foundations for the pump station vault or the underground storage tank, if considered, may be designed based on the reference modulus of subgrade reaction k_1 for a 1-foot by 1-foot square plate of 115 pounds per cubic inch. For the on-site silty and clayey soils, the design modulus of subgrade reaction k in pci for a concrete rectangular element can be determined as:

$$k = k_1 \frac{1 + 0.5 * \frac{B}{L}}{1.5 * B}$$

Where *B* and *L* are the width and length of the element in feet, respectively, while *B* is no more than 14 times the thickness of the element, i.e., floor slab, and k_1 is as defined above.

In order to assist with initiation of the floor slab design, the slab-on-ground should have a minimum thickness of 5 inches. The minimum reinforcement to reduce separation and offset of potential concrete cracks should consist of No. 4 reinforcing bars spaced at 18 inches on-center, each way, placed in the middle one-third of the section. The slab should be doweled into the perimeter building footings to reduce the potential for differential movement. Reinforcement should be properly placed and supported on blocks or "chairs." Welded wire mesh reinforcement is not recommended.

Control joints should be constructed in accordance with recommendations from the Structural Engineer and the Architect. For preliminary design considerations, control joints should be provided in all concrete slabs-on-grade as recommended by American Concrete Institute (ACI) guidelines and at a maximum spacing (in feet) of 2 to 3 times of the slab thickness (in inches), but generally no more than 10 feet,. All joints should form approximately square patterns to reduce potential for randomly oriented shrinkage cracks. The control joints should be tooled at the time of the pour or sawcut to ¼ of slab depth within 6 to 8 hours of concrete placement. All joints in flatwork should be sealed to prevent moisture, vermin, or foreign material intrusion. Precautions should be taken to prevent curling of slabs in this semi-arid region (refer to ACI guidelines).

An allowable adhesion of 700 psf (to be multiplied by the contact area) may be used to account for the lateral resistance generated in the contact between the slabs and the supporting soils. In no case, the lateral resistance can exceed 50 percent of the dead load.

8.7.2. Exterior Slabs

Exterior slabs should be placed on subgrade prepared in accordance with the recommendations provided in the "Site Preparation" section of this report. As indicated above, a Structural Engineer or an Engineer specialized in concrete design should be consulted if cracking of the exterior slabs is to be minimized. As a minimum for exterior walkways, it is recommended that narrow strip concrete slabs, such as sidewalks, be reinforced with at least No. 4 reinforcing bars placed longitudinally at 18 inches on center. Wide exterior slabs should be reinforced with at least No. 4 reinforcing bars placed 18 inches on center, each way. Placement of control joints within exterior flabs should follow the recommendations presented for floor slabs. Reinforcement should extend through the control joints to reduce the potential for differential movement. Control joints should be constructed in accordance with recommendations from the Structural Engineer and Architect.

8.8. Uplift of Buried Structures

Buried structures at a depth greater than 10 feet should be designed to resist uplift forces due to potential buoyancy forces exerted by a high groundwater depth of about 10 feet. These buoyant forces created by the groundwater need to be accounted to prevent buried structures and pipelines from floating or shifting upward. The designer must consider all the downward and upward forces on the structures and design for the worst-case scenario.

In accounting for the uplift resisting forces the designer may include the resistance of the soil adhesion acting against the buried walls of the considered structures, and/or the soil to soil adhesion acting on the vertical projections of foundation edges. These adhesive forces can be computed using the adhesion provided in Table 9.

Several options could be considered by the designer to resist the uplift forces, such as:

- Increase the thickness of the soil cover on top of the tanks by either raising the surface grade or lowering the tanks or combination thereof.
- Increase the weight of the concrete tanks by creating additional internal partitions or thickened walls.
- Place ballast concrete mass within the tank.
- Increase the lateral projection of the mat foundation beyond the tank footprint to increase the base area and the amount of overburden pressure at the foundation level due to the weight of the soil acting on the projection.
- Anchoring the tank foundation by the use of anchors, piles, or deadman.

Implementation of any these options may affect the hydraulic design of the system.

8.9. Seismic Design Parameters

The seismic design coefficients provided below in Table 10 are based on Chapter 16 of the 2013 California Building Code. According to the 2013 CBC, sites subject to liquefaction should be classified as Site Class F, which requires a site response analysis. However, ACSE7-10, Section 20.3.1, which is the basis for the 2013 CBC, states that for structures having a fundamental periods of vibration equal to or less than 0.5s, site response analysis is not required to determine spectral accelerations for liquefiable soils and the site class may be determined in accordance with Section 20.3, in which case this site may be classified as a class D. The structural engineer shall verify that the natural period of the structure meets this condition.

If a site specific response is required, Tetra Tech can provide such an analysis, although, by inspection, the site seismic response will be affected by the liquefaction only minimally because the maximum thickness of potentially liquefiable soils is only about 5 feet. The seismic design coefficients provided below in Table 10 are based on Chapter 16 of the 2013 California Building Code, and on the information provided by the USGS website http://earthquake.usgs.gov/hazards/designmaps/.

Table 10Site Categorization and 2013 CBC Site CoefficientsSite coordinates N 33.80847, and W -118.28369°

Parameter	Design Value
Site Class (Table 20.3-1 ASCE 7)	D^*
Short Period Spectral Acceleration Parameter Ss	1.647**
1-sec. Period Spectral Acceleration Parameter S ₁	0.626**
Short Period Design Spectral Acceleration Parameter S_{DS}	1.098**
1-sec. Period Design Spectral Acceleration Parameter S _{D1}	0.626**
 * Soil profile based on estimated v_{s30} of 300 m/s ** Values from USGS Earthquake Hazards Program website, <u>http://earth</u> based on the ASCE7-10 with July 2013 errata and 2012 International Bu 	

8.10. Lateral Earth Pressures on Underground Walls and Tanks

Based on the 2014 for the County of Los Angeles Building Code, which is based on the 2013 California Building Code (CBC) the design of retaining walls higher than 6 feet, as measured from the top of the footing, requires the inclusion of not only static lateral pressures but also of additional seismically induced lateral earth pressures.

The static lateral pressures acting on the proposed on-site underground structures storage and infiltration structures should be calculated based on the recommendations provided in Table 11.

According to the 2013 CBC the dynamic seismic lateral earth pressures on foundation walls and retaining walls should be determined using the design earthquake ground motions. Based on the USGS U.S. Seismic Design Maps website application (http://earthquake.usgs.gov/designmaps/us/application.php), the PGA from the Design Response Spectrum at the site is approximately 0.44g where the design PGA is calculated as 0.4*S_{DS} where S_{DS} is the risk-targeted, maximum rotated acceleration direction, design response spectrum parameter for short periods. The seismic induced earth pressure increments were estimated using the method recommended by Mikola and Sitar (2013). The seismic pore pressure increment was computed based on the recommendations from Ebeling (1993) for free water within the backfill applicable to free-draining materials like coarse sands, and gravels. These recommendations are provided in Table 11. Lateral earth pressures presented in this table are for a level backfill.

If a drainage system is not be installed or there is a potential for the underground storage tank to discharge into the surrounding soils, the wall should be designed to resist also the hydrostatic pressure.

Determination of whether the active or at-rest condition is appropriate for design will depend on the flexibility of the walls. In walls with stiff clay backfill that are free to rotate at least 0.01 radians (deflection at the top of the wall of at least $0.01 \times H$) may be designed for the active condition. Walls that are not capable of this movement should be assumed rigid and designed for the at-rest condition. The effect of any surcharge (dead or live load) located within a 1(H):1(V) plane drawn upward from the heel of the wall footing should be added to the lateral earth pressures.

Suitable backfill materials within a zone immediately the behind the subterranean walls, including the storage tank walls, should have a Sand Equivalent of about 30, an Expansion Index of less than 20, and fines content (passing #200 sieve) of less than 15 percent. It is expected that due to the expansive clayey nature of most of the on-site material, the on-site materials will not be generally suitable as a backfill immediately behind. Consequently, a select on-site material with an Expansion Index less than 20, or approved non-expansive import material should be used for the backfill within at least 5 feet behind the back of the underground wall or tank walls. It is expected that additional laboratory testing will be necessary to determine the suitability of the selected on site materials. The materials that are approved as backfill materials should be moisture-conditioned 110 percent of the optimum moisture content, and placed in horizontal lifts not more than 8 inches in uncompacted thickness, and compacted to at least 90 percent of the maximum dry density, as evaluated by the latest version of ASTM D1557.

	ssures due to Static and Seismic Lo	Jaus
Ac	tive Pressure for Yielding Walls	
Static active pressure	above groundwater	51z + 0.42Q
(psf)	below groundwater (at depth $z > z_w$)	$51z_{\rm w} + 89(z - z_{\rm w}) + 0.42Q$
Active seismic pressure increment	above groundwater	14z
(psf)	below groundwater (at depth $z > z_w$)	$\frac{14z_{w} + 7 (z - z_{w}) +}{24\sqrt{(z - z_{w}) * d_{w}}}$
At re	st Pressure for Non-yielding Walls	
Static at-rest pressure	above groundwater	71z + 0.59Q
(psf)	below groundwater (at depth $z > z_w$)	$71z_{\rm w} + 99(z - z_{\rm w}) + 0.59Q$
At-rest seismic pressure increment	above groundwater	31z
(psf)	below groundwater (at depth $z > z_w$)	$\frac{31z_{w} + 16(z - z_{w}) +}{24\sqrt{(z - z_{w}) * d_{w}}}$
Allowab	le Lateral Passive Pressure Resistance Includes a Factor of Safety of 2	
Lateral passive pressure	above groundwater	$142z_1$
(psf)	below groundwater at depth $z_{\rm w}$	$142z_{w} + 74(z_{1} - z_{w})$
Notes:		

Table 11Geotechnical Design Parameters for Subterranean WallsLateral Pressures due to Static and Seismic Loads

Notes:

Lateral Pressures due to Seismic Loading are based on a PGA=0.44g for a design response spectrum taken as 2/3 MCE_R response spectrum. The appropriate total seismic force (active plus seismic increment for yielding walls and at rest plus seismic increment for non-yielding walls) should be calculated be assuming a downward increasing tringle equivalent fluid pressure distribution. The resulting force should be assumed to act at 1/3 of the height of the wall above the bottom of the wall.

• Pressure based on soil with $\phi = 24^\circ$, c = 0 psf, $\gamma_t = 120 \text{ pcf}$ (above groundwater), $\gamma_t = 125 \text{ pcf}$ (below groundwater)

• The 2013 CBC requires that basement walls be designed for at rest earth pressures for static conditions.

Legend:

- z ... Depth (ft) below the grade behind the wall –depth measured from the ground surface to the depth where the soil lateral pressure is being evaluated;
- z₁ ... Depth (ft) below the grade where passive conditions apply, i.e., usually in front of the wall depth measured from the ground surface to the depth where the soil lateral pressure is being evaluated;
- $z_w \quad \dots \text{ Depth to groundwater} \ (ft) \text{depth measured from the ground surface to the groundwater};$
- d_w ... Depth of water along the wall height (ft) measured from the groundwater table to the bottom of the structure;
- Q ... Uniform surcharge (psf) within a 1(H):1(V) plane drawn upward from the heel of the wall footing.

8.11. Embedded Posts and Poles at Grade

8.11.1. Non-Constrained Case

For the non-constrained case where the pole is not restricted to move at the ground level, the minimum depth of embedment required to resist lateral loads should be determined in accordance with the 2013 CBC Section 1807.3.2.1. The allowable static lateral soil bearing pressure can be assumed to be equal to 160 pcf equivalent fluid density (pcf EFD). Where bare ground (without concrete or asphalt cover) is present adjacent to the foundation, the lateral resistance should be ignored for the upper 12 inches below grade. Therefore, a trapezoidal pressure distribution should be used starting at 12 inches below grade. The allowable passive earth pressure value incorporates a Factor of Safety of 2. Vertical compressive loading can be resisted utilizing an allowable end bearing pressure of 2,800 psf.

8.11.2. Constrained Case

For the constrained case where the pole is restricted from movement at the ground level by encasement in surrounding concrete or similar, the minimum depth of embedment required to resist lateral loads should be determined in accordance with the 2013 CBC, Section 1807.3.2.2. The allowable static lateral soil bearing pressure can be assumed to be at least 160 pcf EFD. The constrained earth pressure value incorporates a Factor of Safety of 2. Vertical compressive loading can be resisted utilizing an allowable end bearing pressure of 2,800 psf.

8.12. Pipeline Design and Construction

Design recommendations for the proposed pipeline trenches and backfill are provided below.

8.12.1. Trench Excavation

Recommendations provided in the "Temporary Slopes and Trench Excavations" section of this report should be followed for design and construction of trenches for the proposed pipelines.

8.12.2. Trench Bottom Preparation

The bottom of pipeline trenches should be scarified to a depth of 6 inches. Any particle size greater than 3 inches should be removed. The scarified surface should be moisture conditioned to at least 125 percent of optimum moisture content and compacted to at least 90 percent of maximum dry density per the latest version of ASTM D1557.

8.12.3. Trench Backfill

<u>Bedding and pipe zone backfill</u> material for the pipelines should consist of clean sand or gravel The actual selection and suitability of the material should be determined based on the pipe design loading and requirements. The clayey materials found within the upper 20 feet at the site are not expected to be suitable for pipe bedding and pipe zone backfill. The bedding layer extending typically into the range between the pipe invert and the springline should be moisture-conditioned

to at least the optimum moisture content and compacted to at least 90 percent of maximum density per ASTM D1557. The pipe zone backfill extending typically 6 to 12 inches above the pipe should be moisture-conditioned to at least 110 percent of optimum moisture and hand tamped to achieve a density of at least 90 percent of maximum density per ASTM D1557. The use of mechanized compaction equipment within the pipe zone should be carefully controlled to avoid overstressing or damaging the pipe. Backfill should be placed on each side of the pipe simultaneously to avoid unbalanced loads on the pipe.

<u>General trench backfill</u> zone extends from the top of the pipe zone backfill to the finished grade. Approved excavated soil may be used for general trench backfill. If the excavated on-site material is used as the trench backfill, it should be moisture-conditioned to at least 125 percent of optimum moisture content and compacted to at least 90 percent of maximum dry density per the latest version of ASTM D1557. Within proposed pavement areas the upper 12 inches of backfill should be compacted to at least 95 percent of maximum.

Compaction by ponding or jetting of the trench backfill materials may be permitted by the Geotechnical Engineer only where select sand backfill is used and adequate drainage is available in the sandier surrounding soil intervals. If ponding or jetting are used for compaction, it will likely be necessary to supplement these methods by the use of vibrators to achieve the required compaction.

8.13. Pavement Sections

New pavements for driveways and parking lots are anticipated to be constructed on the native soils as well as on top of the underground storage tank. The recommendations presented below are for pavements constructed on native soils subgrade or on at least 2 feet of soil subgrade. For different conditions this office should be contacted. If pavements are to be constructed directly on the ceiling of the underground storage tank, the pavements should be designed as a part of the structural design.

8.13.1. Subgrade Preparation

The subgrade preparation and fill placement in the areas to be paved should conform to the recommendations provided in the "Site Preparation" and "General Site Grading" sections of this report.

8.13.2. Asphalt Concrete Pavement Design

Flexible pavement sections have been evaluated in general accordance with the Caltrans Highway Design Manual method for flexible pavement design using a 20-year design life period. It is estimated that the access roads may be designed for a Traffic Index of 5. If fire access is required, a Traffic Index of 5 or 6 is typically considered acceptable by regulatory agencies. Based on the prevailing on-site subgrade clayey sand soils R-value of 15 was assumed. The resulting recommended pavement sections are presented in Table 12.

	Fl	exible Paveme			Full Depth
Location	R-Value	Assumed Traffic Index	Asphalt Concrete (inches)	Aggregate Base (inches)	Asphalt Concrete Alternative
Parking / drive aisles		5.0 or less	3.0	8	7
Light / moderate traffic	15	6.0	3.5	10.5	8.5

Table 12Flexible Pavement Sections

Asphalt concrete and aggregate base should conform to the Specifications for Public Works Construction (Green Book) Sections 203-6 and 200-2, respectively. The aggregate base course should be compacted to 95 percent or more of the maximum dry density, as evaluated by the latest version of ASTM D1557.

8.13.3. Pavement Construction Observations

The preparation of the pavement subgrade and the placement of base course and pavement sections should be observed by Tetra Tech personnel. Careful observation is recommended to evaluate that the pavement subgrade is consistent with the design assumptions and that it is uniform and uniformly compacted and that the recommended pavement and base course thickness are achieved. Paved areas should be properly sloped, and surface drainage facilities should be established to reduce water infiltration into the pavement subgrade. Curbing located adjacent to paved areas should be founded in the soil subgrade in order to provide a cutoff to reduce water infiltration into the base course.

8.14. Soil Corrosion

The corrosion potential of the on-site materials to buried steel and concrete was evaluated based on laboratory testing on 2 representative soil samples. Table 13 below presents the results of the corrosivity testing.

Boring	Sample ID	Depth (feet)	рН	Resistivity (ohm-cm)	Chlorides (ppm/%)	Soluble Sulfate Content in Soil (ppm/%)
В-3	SK-1	0-5	7.1	680	69/0.0069	330/0.0330 Category S0 per 2013 CBC
B-4	SPT-7	17.5-19	7.4	480	213/0.0213	496/0.0496 Category S0 per 2013 CBC

Table 13Corrosivity Test Results

Per 2013 CBC/ 2012 IBC, Section 1904.1, concrete subject to exposure to sulfates shall comply with the requirements set forth in ACI 318, Section 4.3. Based on the measured water soluble sulfate results the exposure of buried concrete to sulfate attack should be considered "not applicable", i.e., exposure class S0 per ACI 318, Table 4.2.1. Consequently, injurious sulfate

attack is not anticipated for concrete with a minimum 28-day compressive strength of 2,500 psi. Per 2013 CBC, Section 1904.1, concrete reinforcement should be protected from corrosion and exposure to chlorides in accordance with ACI 318, Section 4.3.

The evaluation of potential for corrosion of buried metals was based on the minimum resistivity and our experience with similar soils. The on-site soils are anticipated to likely have a "severe" corrosion potential to buried ferrous metals. A corrosion specialist should be consulted regarding suitable types of piping and necessary protection for underground metal conduits. The corrosion potential of the on-site soils should be verified during construction for each encountered soil type. Imported fill materials should be tested prior to placement to confirm that their corrosion potential is not more severe than the one assumed for the project.

8.15. Drainage Control

The intent of this section is to provide general information regarding the control of surface water. The control of surface water is essential to the satisfactory performance of the building construction and site improvements. Surface water should be controlled so that conditions of uniform moisture are maintained beneath and adjacent to the structure, even during periods of heavy rainfall. The following recommendations should be considered as minimal.

- Ponding and areas of low flow gradients should be avoided.
- Paved surfaces within 10 feet from the building foundation should be provided with a gradient of at least 2 percent sloping away from improvements.
- Bare soil, e.g., planters, within 10 feet of the structure should be sloped away from the improvement at a gradient of 5 percent.
- Positive drainage devices, such as graded swales, paved ditches, and/or catch basins should be employed to accumulate and convey water to appropriate discharge points.
- Concrete walks and flatwork should not obstruct the free flow of surface water.
- Area drains should be recessed below grade to allow free flow of water into the basin.
- Enclosed raised planters should be sealed at the bottom and provided with an ample flow gradient to a drainage device. Recessed planters and landscaped areas should be provided with area inlet and subsurface drain pipes.
- Planters should not be located immediately adjacent to structures. If planters are to be located adjacent to a structure, they should be positively sealed, should incorporate a subdrain, and should be provided with free discharge capacity to a drainage device.
- Planting areas at grade should be provided with positive drainage. Wherever possible, the grade of exposed soil areas should be established above adjacent paved grades. Drainage devices and curbing should be provided to prevent runoff from adjacent pavement or walks into planted areas.
- Gutter and downspout systems should be provided to capture discharge from roof areas. The accumulated roof water should be conveyed to an off-site disposal area by a pipe or concrete swale system.
- Landscape watering should be performed judiciously to preclude either soaking or desiccation of soils. The watering should be such that it just sustains plant growth without excessive infiltration. Sprinkler systems should be checked periodically to detect leakage and irrigation efforts should be reduced or halted during the rainy season.

9. GENERAL SITE GRADING RECOMMENDATIONS

The intent of this section is to provide general information regarding the site grading. Site grading operations should conform with applicable local building and safety codes and to the rules and regulations of those governmental agencies having jurisdiction over the subject construction.

The grading contractor is responsible for notifying governmental agencies, as required, and a representative of Tetra Tech at the start of site cleanup, at the initiation of grading, and any time that grading operations are resumed after an interruption. Each step of the grading should be accepted in a specific area by a representative of Tetra Tech, and where required, should be approved by the applicable governmental agencies prior to proceeding with subsequent work.

The following site grading recommendations should be regarded as minimal. The site grading recommendations should be incorporated into the project plans and specifications.

- 1. Prior to grading, existing vegetation, trash, surface structures and debris should be removed and disposed off-site at a legal dumpsite. Any existing utility lines, or other subsurface structures which are not to be utilized, should be removed, destroyed, or abandoned in compliance with current governmental regulations.
- 2. Subsequent to cleanup operations, and prior to initial grading, a reasonable search should be made for subsurface obstructions and/or possible loose fill or detrimental soil types. This search should be conducted by the contractor, with advice from and under the observation of a representative of Tetra Tech.
- 3. Prior to the placement of fill or foundations within the building area, the site should be prepared in accordance with the recommendations presented in the section "Site Preparation" of this report. All undocumented fill or disturbed soils within the building areas should be removed and processed as recommended by the representative of Tetra Tech.
- 4. The exposed subgrade and/or excavation bottom should be observed and approved by a representative of Tetra Tech BAS for conformance with the intent of the recommendations presented in this report and prior to any further processing or fill placement. It should be understood that the actual encountered conditions may warrant excavation and/or subgrade preparation beyond the extent recommended and/or anticipated in this report.
- 5. On-site inorganic granular soils that are free of debris or contamination are considered suitable for placement as compacted fill. Any rock or other soil fragments greater than 6 inches in size should not be placed within 5 feet of the foundation subgrade.
- 6. Any imported fill material required for backfill or grading should be tested and approved prior to delivery to the site.
- 7. Visual observations and field tests should be performed during grading by a representative of Tetra Tech. This is necessary to assist the contractor in obtaining the proper moisture content and required degree of compaction. Wherever, in the opinion of a representative of Tetra Tech,

an unsatisfactory condition is being created in any area, whether by cutting or filling, the work should not proceed in that area until the condition has been corrected.

10. DESIGN REVIEW AND CONSTRUCTION MONITORING

Geotechnical review of plans and specifications is of paramount importance in engineering practice. The poor performance of many structures has been attributed to inadequate geotechnical review of construction documents. Additionally, observation and testing of the subgrade will be important to the performance of the proposed development. The following sections present our recommendations relative to the review of construction documents and the monitoring of construction activities.

10.1. Plans and Specifications

The design plans and specifications should be reviewed and approved by Tetra Tech prior to bidding and construction, as the geotechnical recommendations may need to be re-evaluated in the light of the actual design configuration and loads. This review is necessary to evaluate whether the recommendations contained in this report have been incorporated into the project plans and specifications as intended.

10.2. Construction Monitoring

Site preparation, pile installation, assessment of imported fill materials, fill placement, and other site grading operations should be observed and tested. The subgrade soils exposed during the construction may differ from those anticipated in the preparation of this report. Continuous observation by a representative of Tetra Tech should be implemented during construction to allow for evaluation of the soil conditions as they are encountered, and to provide the opportunity to recommend appropriate revisions as needed.

11. STATEMENT 111

Based on the data and evaluations presented in the report, it is the opinion of Tetra Tech that the subject project site for the proposed Carriage Crest Park facilities will be safe against hazards from future landsliding, settlement or slippage and that the proposed grading construction will have no adverse impact on the geologic stability of property outside of the project site.

12. LIMITATIONS

The recommendations and opinions expressed in this report are based on Tetra Tech's review of background documents and on information obtained from the current geotechnical investigation. It should be noted that as part of this study the possible presence of hazardous materials at the site was evaluated and the findings have been summarized in a separate report.

Due to the limited nature of the field explorations, conditions not observed and described in this report may be present on the site. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation and laboratory testing can be performed upon request. It should be understood that conditions different from those anticipated in this report may be encountered during grading operations, for example, the extent of unsuitable soil and the associated additional effort required to mitigate them.

Site conditions, including groundwater level, can change with time as a result of natural processes or the activities of man at the subject site or at nearby sites. Changes to the applicable laws, regulations, codes, and standards of practice may occur as a result of government action or the broadening of knowledge. The findings of this document may, therefore, be invalidated over time, in part or in whole, by changes over which Tetra Tech has no control. Therefore, this report should reviewed and recertified if it were to be used for a project design commencing more than 1 year after the date of issuance of this report.

Tetra Tech's recommendations for this site are dependent upon appropriate quality control of the excavation for the construction of the underground storage tank and related facilities. Accordingly, the recommendations are made contingent upon the opportunity for Tetra Tech to observe grading operations, including installation of the temporary shoring. If parties other than Tetra Tech are engaged to provide such services, such parties must be notified that they will be required to assume complete responsibility as the Geotechnical Engineer of Record for the geotechnical phase of the project by concurring with the recommendations in this report and/or by providing alternative recommendations.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Tetra Tech should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. Reliance by others on the data presented herein or for purposes other than those stated in the text is authorized only if so permitted in writing by Tetra Tech. It should be understood that such an authorization may incur additional expenses and charges.

Tetra Tech has endeavored to perform its evaluation using the degree of care and skill ordinarily exercised under similar circumstances by reputable geotechnical professionals with experience in this area in similar soil conditions. No other warranty, either expressed or implied, is made as to the conclusions and recommendations contained in this report.

13. SELECTED REFERENCES

- California Building Standards Commission, 2013 California Building Code, California Code of Regulations Title 24, Based on the 2012 International Building Code, July 2013.
- California Department of Conservation, Division of Mines and Geology, 2008, Guidelines for Evaluation and Mitigation of Seismic Hazards in California: Special Publication 117.
- California Department of Conservation, Division of Mines and Geology, 1999, State of California, Seismic Hazard Zones, Beverly Hills Quadrangle, Official Map, released March 25, 1999, Scale 1:24,000.
- California Department of Conservation, Division of Mines and Geology, 1998, Seismic Hazard Evaluation of the Beverly Hills 7.5-Minute Quadrangle, Los Angeles County, California: Open-File Report 98-14.
- California Department of Transportation (CALTRANS), 2011, Trenching and Shoring Manual. County of Los Angeles, Department of Public Works, Geotechnical and Materials Engineering Division, 2009. Review of Geotechnical Reports addressing Liquefaction. GME-3 (February 4).
- California Geological Survey, 1999, State of California, Tsunami Inundation Map for Emergency Planning, County of Los Angeles, Beverly Hills Quadrangle, released March 1, 1999, Scale 1:24,000.
- Cao, T., Bryant, W. A., Rowshandel B., Branum D., and Wills C. J., 2003, The Revised 2002 California Probabilistic Seismic Hazard Maps June 2003.
- Dibblee, T.W., Ehrenspeck, H.E., Ehlig, P.L., and Bartlett, W.L., 1990, Geologic map of the Palos Verdes Peninsula and vicinity, Redondo Beach, Torrance, and San Pedro guadrangles, Los Angeles County, California: Dibblee Foundation, DF-70, Scale 1:24,000.

Ebeling, R., 1993, The Seismic Design of Waterfront Retaining Structures, NCEL Technical Report R-939, January 1993.

Idriss, I.M., and Boulanger, R.W., 2008. Soil Liquefaction during Earthquakes. Earthquake Engineering Research Institute.

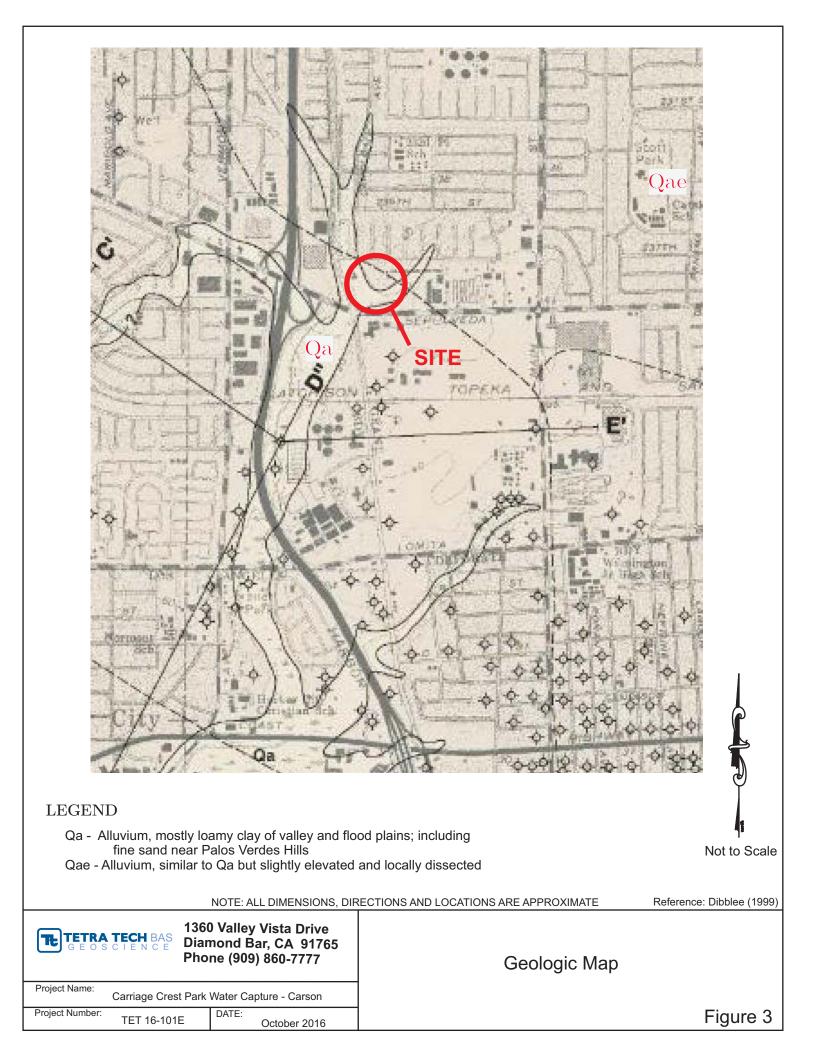
International Code Council, Inc., 2012 International Building Code, June 2011.

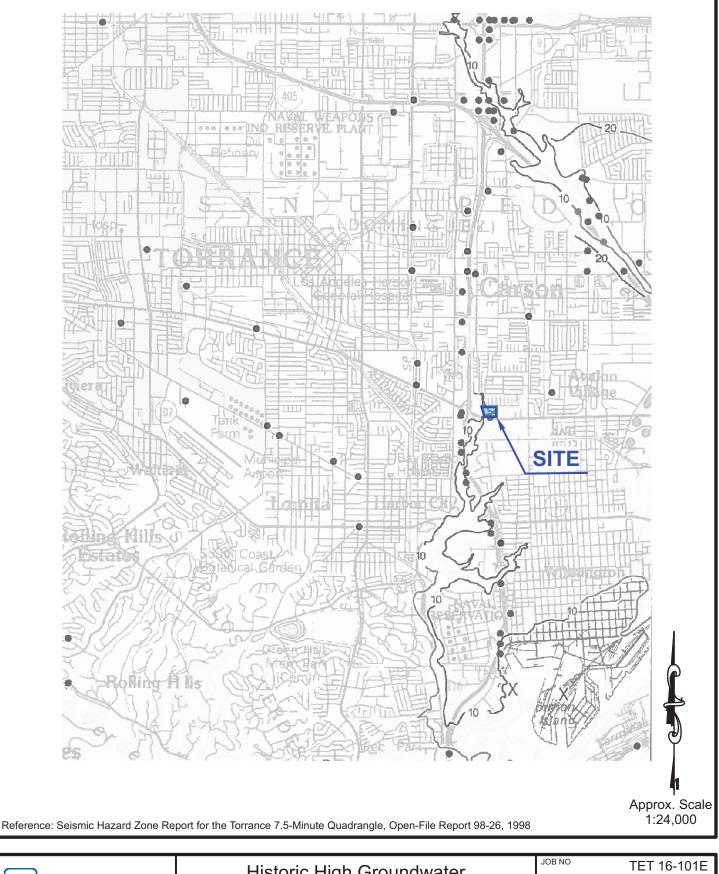
- Jennings, C. W., and Bryant, W. A., 2010, Fault Activity Map of California, California Geological Survey, Data Map No. 6, Map scale 1:750,000.
- Naval Facilities Engineering Command (NAVFAC), 1982. Soil Mechanics, Foundations and Earth Structures. Design Manuals 7.01 and 7.02.

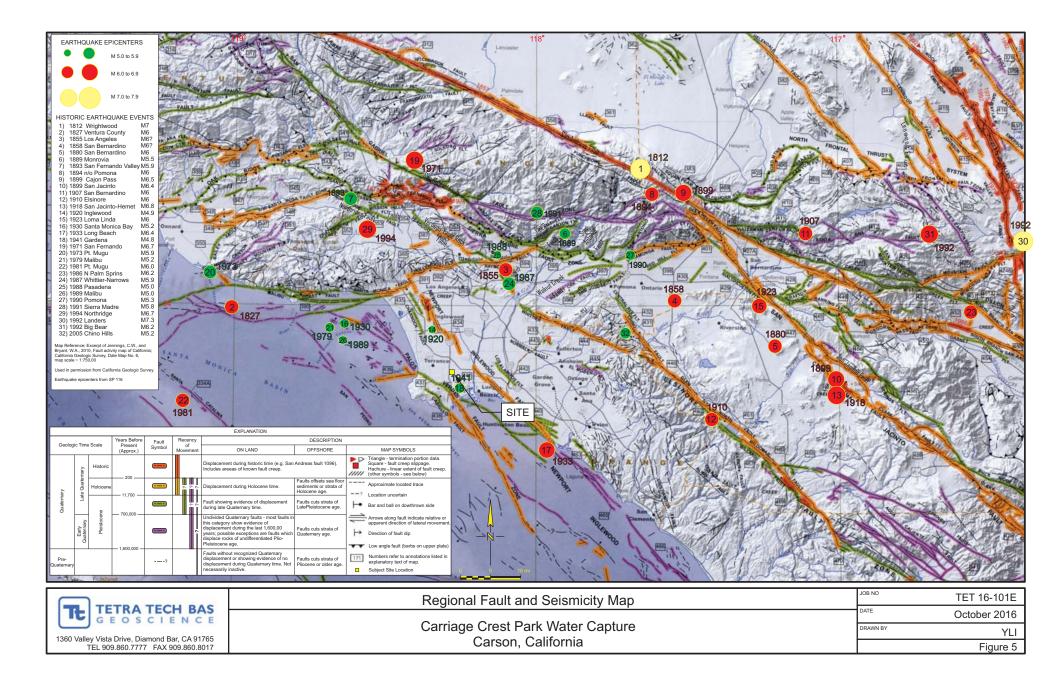
- Leon, L. A., Christofferson, S. A., Dolan, J. F., Shaw, J. H., and Pratt, T. L., 2007, Earthquake-byearthquake fold growth above the Puente Hills, blind thrust fault, Los Angeles, California: Implications for fold kinematics and seismic hazard, J. Geophys. Res., 112.
- Mikola, G. R., and Sitar, N., 2013. "Seismic Earth Pressures on Retaining Structures in Cohesionless Soils." Report submitted to the California Department of Transportation (Caltrans), Report No. UCB GT 13-01, March 2013.
- Norris, R. M., and R. W. Webb, 1990, Geology of California, John Wiley & Sons, N.Y.
- Olson, E.L. and Cooke, M.L., 2005, Application of Three Fault Growth Criteria to the Puente Hills Thrust System, Los Angeles, California, USA: Journal of Structural Geology 27(2005)1765-1777.
- Poland and Piper, 1956, Ground-water geology of the coastal zone, Long Beach Santa Ana area, California, USGS, Water-Supply Paper 1109, dated 1956
- Pradel, D., 1998a, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils: Journal of Geotechnical and Geoenvironmental Engineering, dated April, pp. 364-368.
- Pradel, D., 1998b, Erratum to Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils: Journal of Geotechnical and Geoenvironmental Engineering, dated October, p. 1048.
- Robertson, P.K. and Cabal, K.L., 2007. Guide to Cone Penetration Testing for Geotechnical Engineering.
- Robertson, P.K. 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27 (1), 151-8.
- Robertson, P.K. and Wride, C.E., 1998. Cyclic Liquefaction and its Evaluation based on the CPT Canadian Geotechnical Journal, 1998, Vol. 35, August.
- Robertson, P.K., 2009. Interpretation of Cone Penetration Tests a unified approach. Canadian Geotechnical Journal, 2009, Vol. 46, pgs. 1337-1355.
- Robertson, P.K. and Shao L., 2010. Estimation of Seismic Compression in Dry Soils Using the CPT. Fifth Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor I.M. Idriss, May 24-29, 2010, San Diego, CA, pgs. 1-6.
- Shaw, J., Plesch, A., Dolan, J. F., Pratt, T. L., Fiore, P., 2002, Puente Hills Blind-Thrust System, Los Angeles, California, Bulletin of the Seismological Society of America (Seismological Society of America) 92 (8): 2946–2960.

- Southern California Earthquake Center, 1999. Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction in California, dated March.
- Terzaghi, K., Peck R., and Mesri G., (1996), Soil Mechanics in Engineering Practice, Third Edition, Published by Wiley-Interscience, February 7, 1996.
- Youd, T.L., and Idriss, I.M. (eds.), 1998, Summary Report in Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils: National Center for Earthquake Engineering Research Technical Report NCEER-97-0022, pp. 1-40.
- Youd, T.L. and Idriss, I.M., 2001, Liquefaction Resistance of Soils: Summary report of NCEER 1996 and 1998 NCEER/SF Workshops on Evaluation of Liquefaction Resistance of Soils: Journal of Geotechnical and Geoenvironmental Engineering, dated April.

Figures

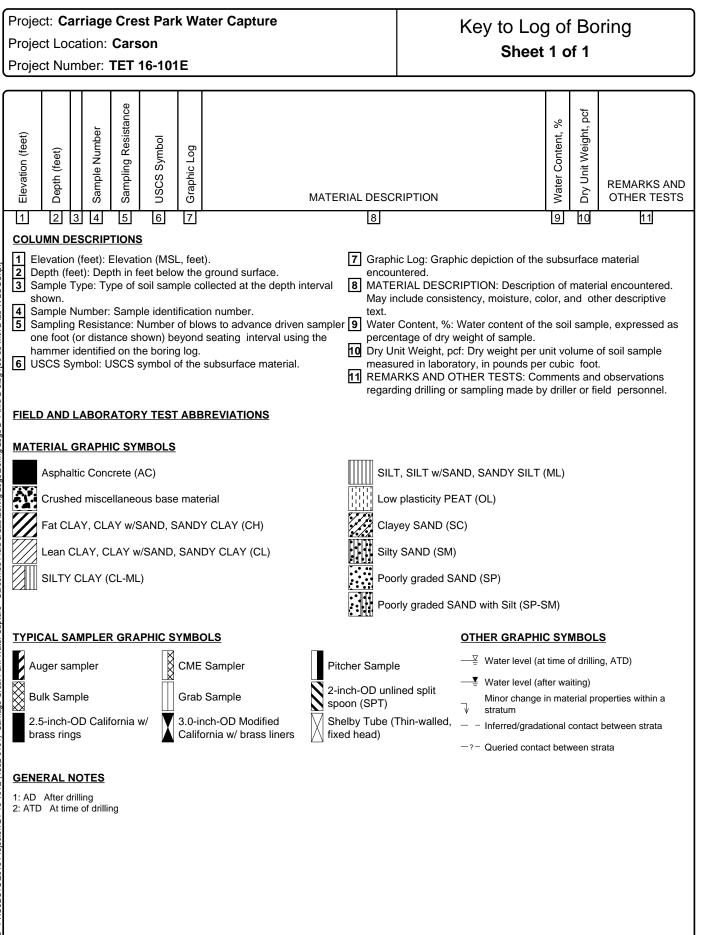

Reference: Google Earth Pro (2016)


	Project Location Map	JOB NO	TET 16-101E
TETRA TECH BAS GEOSCIENCE		DATE	October 2016
1360 Valley Vista Drive, Diamond Bar, CA 91765 TEL 909.860,7777 FAX 909.860.8017	Carriage Crest Park Water Capture	DRAWN BY	YLI
TEL 909.860.7777 FAX 909.860.8017	Carson, California		Figure 1


Drawing References: Google Earth Pro (2016)


	Project Layout, Boring and CPT Location Map	JOB NO	TET 16-101E
GEOSCIENCE		DATE	October 2016
1360 Valley Vista Drive, Diamond Bar, CA 91765	Carriage Crest Park Water Capture Carson, California	DRAWN BY	YLI
TEL 909.860.7777 FAX 909.860.8017	Carson, Camornia		Figure 2

	Historic High Groundwater		TET 16-101E
TETRA TECH BAS		DATE	October 2016
1360 Valley Vista Drive, Diamond Bar, CA 91765		DRAWN BY	YLI
TEL 909.860.7777 FAX 909.860.8017	Carson, California		Figure 4



Appendix A

Logs of Exploratory Borings

TETRA TECH

ΤĿ

son\03 Field & Lab\Boring Logs\Boring Logs B-1 thru B-5.bg4[60-65 with 2 lab Tt LOGO. Capture Carriage Crest Park Water (4552-0101) .:\02 - PROJECTS\2016 Projects\TET 16-101E

Figure A-1

Date(s) Drilled	9/27/	201	6					Logged By Andrew McLarty	Checked By Feri			ica
Drilling Method	HSA							Drill Bit Size/Type 8-inch	Total Depth of Borehole 51.5	feet	bgs	
Drill Rig Type	СМЕ	5 75						Drilling Contractor 2R Drilling Inc.	Approximate Surface Elevation	25.0	feet (C	Google Earth Pro)
Groundw and Date				0 feet	AD (15	mins))	Sampling Modified California, SPT, Method(s) Environmental	Hammer CME A Data 30-incl			nmer 140 lbs with
Borehole Backfill	^e Nea	at-c	emen	t grou	it per L	ACDP	Ή	Location Northern area of the parking lot. L	Long	gitude:	-118.28471	
	Depth (feet)		Sample Number	Sampling Resistance	USCS Symbol	Graphic Log		MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHER TESTS
25 — - -	0-	X	R-1	3/7/11	Asphalt Base SC		– [FILL] – Clayey	ies AC over 9 inches of base Artificial Fill (af) y SAND, medium dense, dark gray to olive gray (5Y 4/2), damj	o to moist, strong			P-1
20 20	5 -		R-2	4/8/12	CL		Silty le	iferous odor ean CLAY, stiff, black (5Y 2.5/1), damp, piece of rubber VEJ Alluvium (Qa) CLAY, stiff, black (5Y 2.5/1), moist, carbonate staining along p		-		P-2, VOC-1 <#200 = 69
- - 15	10—		SPT-3 R-4	3/5/6 6/10/14	СН		_	LAY, very stilf, pale olive to olive gray (5Y 2.5/1), moist		18.0 19.4	109.0	<#200 = 69 LL=46 / PL=19 / PI=27 P-3, VOC-2
-		Þ	SPT-5	4/7/11	CL		_ `	ean CLAY, very stiff, greenish gray (5G 5/1), damp				
10 — - -	15 -	X	R-6	11/21/29	SC CL			y SAND, dense, greenish gray to gray (N 6/1) damp	of sand			P-4, VOC-3 <#200 = 56%
5	20 —		SPT-7 R-8	5/6/10 21/25/28	CL-ML		Silty le	ean CLAY with SAND to SILT, hard, light olive gray (5Y 6/2), d	amp	21.7		LL=36 / PL=21 / PI=15 VOC-4
- - - -	25 —		SPT-9	6/12/14	SM		- Silty S	SAND, medium dense, grayish green (5G 5/1), moist, iron stain ations	ing along partings and			
-5	30 -		R-10	6/9/14			-		-	26.0	95.8	
-10	35 —	S	SPT-11	5/18/16	SP-SM SM		clay, s	y graded SAND with SILT, dense, light yellowish brown (10YR stratified with gray clay lenses less than 1/4 inch thick SAND, dense, light brownish gray (2.5Y 6/2), moist	6/4), damp, trace of			
-15 — -15 — -	40 -		SPT-12	7/16/18			 		₩ ^{ee} t AD (15 mins)			<#200 = 31%
-20	45 -		SPT-13	8/15/17			(@	45') light yellowish brown (10YR 6/4), saturated	-			Sampler is visibly wet at 45 feet
-25 	50 -		SPT-14	16/28/50	SP			y graded SAND, very dense, light yellowish brown (10YR 6/4), m of boring at 51.5 feet Below Ground Surface (BGS).	saturated			
- -30 — -30 —	55 —						 Notes: 1. Gro 		eat cement.			
- -35 -	60 —						-		-			

Date(s) Drilled	9/27/	201	6					Logged By	Andrew Mo	Larty		Checked By Fe	rnando	o Cuei	nca	
Drilling Nethod	HSA							Drill Bit Size/Type	8-inch			Total Depth of Borehole 31.	5 feet	bgs		
Drill Rig Type	СМЕ	75						Drilling Contractor	2R Drilling	Inc.		Approximate Surface Elevation 25.0 feet (GoogleEarth Pro)				
Froundv	vater L e Mea	.eve sure	l not	enco	untered	k			Bulk, Modif Environme	ied California, ntal	SPT,		Auto-t nch dr		mmer 140 lbs wit	
Borehole Backfill					it per L		ч	Location	Southern are	a of the parki	ng lot. Lat	titude: 33.8090	1 Lon	gitude	: -118.28451	
				е										4		
et)			ber	Sampling Resistance	_								nt, %	Unit Weight, pcf		
Elevation (feet)	eet)		Sample Number	g Re	Symbol	Log							Water Content,	Weig		
atior	Depth (feet)		ple I	plinç	S S	Graphic Log							er C	Unit		
	Dep		Sam	Sam	nscs	Grag			MATE	RIAL DESCRIP	TION		Wat	Dry	REMARKS ANI OTHER TESTS	
25 -	0-	Ø	SK-1A		Asphalt Base	7/2		es of AC ove Artificial Fill (r 6 inches of base af)				1			
_	-		R-1B	4/6/7	SC		- Claye	/ SAND, med	lium dense, dark	gray to black (5Y 2.5	5/1), damp to m	nosit, strong odor	-		P-1	
20 -	5-	X	R-2	8/9/11			Fat Cl	VE] Alluvium AY, stiff, bla	(Qa) ck (5Y 2.5/1) dam	p, strong odor			-		P-2, VOC-1	
-	-	b	SPT-3	4/7/8	CL		Silty le	an CLAY, ve	ry stiff, gray to oli	ve brown (5Y 4/2), n	noist		3			
15 —	10-	X	R-4	6/10/13	СН		Fat Cl	AY, very stif	, black (5Y 2.5/1)	damp, strong odor	· ·		-		P-3, VOC-2	
-	-	Я	SPT-5	4/7/7	CL		Silty le	an CLAY sti	ff areenish aray (5G 4/1), moist, calid	he stringers a	nd staining along	-			
10 -	15 -		R-6	10/15/23	-		parting	js				ia staining along	-		P-4, VOC-3	
-	-	R	SPT-7	6/15/19				16ft) very stif					3		,	
- 5	- 20 —				SP CL	///	Lean	CLAY, hard, p	-	ve gray (5Y 6/2), mo , damp, iron staining			1			
-	-	Å	R-8	13/17/24			petroli	ferous					1		VOC-4	
0	- 25 —	Ш					<u> </u>						3			
	-	Ν	SPT-9	9/13/17	SM		_ Silty S	AND, mediur	n dense to dense	, greenish gray (5G	5/1), moist		1			
_	-	11					-						-			
-5 —	30 —	Þ	SPT-10	10/13/21				30ft) dense	31.5 feet BGS.				3			
	-	$\left \right $					 Notes 	-	encountered.				1			
-10	35 —									1-3 feet bentonite ch	nips, 3-31.5 fee	et neat cement.	-			
-	-						Ē						3			
-15	40 -	$\left\{ \right\}$					F						-			
-	-						F						1			
-20 —	- 45 —	11					-						1			
]	-						E]			
- -25 —	- 50 —						<u> </u>						4			
-	-	11					-						1			
-30 —	- 55 -						_						-			
-30	55 — -						-						-			
-	-	11					F						1			
-35 —	60 —	<u>. </u>			1		<u> </u>						_			

	Date(s) Drilled	9/28/2	201	6					Logged By Andrew McLarty		Checked By Ferr	nando	o Cuer	nca		
	Drilling Method	HSA							Drill Bit Size/Type 8-inch		Total Depth of Borehole 51.5	feet	bgs			
	Drill Rig Type	СМЕ	75						Drilling Contractor 2R Drilling Inc.		Approximate Surface Elevation					
	Groundw and Date				l feet	AD (15	mins)	Sampling Bulk, Modified California, Sl Method(s) Environmental	PT,		Hammer CME Auto-trip hammer 140 lbs with				
	Borehole Backfill	Nea	t-ce	ement	t grou	t per L/	ACDP	н	Location Center of Field. Lattitude: 33	8.80851 L	_ongitude: -118.	2835	B			
ſ					đ											
-:02 - PROJECTS2016 Projects/TET 16-101E (4552-0101) Carriage Crest Park Water Capture - Carson/03 Field & Lab/Boring Logs/Boring Logs B-1 thru B-5:bg4(80-65 with 2 lab Tt LOGO.tp)]	Elevation (feet)	· Depth (feet)		Sample Number	Sampling Resistance	USCS Symbol	Graphic Log		MATERIAL DESCRIPTIO	ON		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHER TESTS		
-5.bg4[60-65	27 — - - -		XXXXX	SK-1 R-2	4/8/10	SC			vrtificial Fill (af) SAND, medium dense, brown (10YR 4/3), damp, trad	ce of red br	ick fragments	10.2 15.3	106.1 113.2	EI = 55 Res = 11600 ohm-cm pH = 7.1 SO4 = 0.0069% CI = 0.0330%		
1 thru B-	22	5		R-3	6/11/14	SM	ŰŰ	Silty S	E] Alluvium (Qa) ND, medium dense, brown (10YR 5/3), damp					P-1 P-2, VOC-1 G / S / F = 2 / 56 / 42		
-ogs B-	- - 17	- 10		SPT-4	3/5/7			- along	an CLAY, stiff, dark gray (N 4/1) to brown (10YR 4/3), artings, stratified with dark brown clay	, moist, cari		22.8		LL=48 / PL=23 / PI=25		
soring L		-	X	R-5	5/9/10	CH			AY with SAND, stiff, gray (N 6/1), moist	st, trace of c	arbonate stringers	20.3	106.7	P-3, VOC-2 DS uu		
Logs/B	12	- 15		SPT-6	4/6/10			-			-	21.4		LL=48 / PL=22 / PI=26 P-4, VOC-3		
Boring	-	-		R-7	4/7/9			-			-	22.2	104.7	DS		
ld & Lab	7	20 -		SPT-8 R-9	4/5/8 8/17/23	SM		- 	ND, dense, yellowish brown (10YR 5/6), moist		=	15.7	105.5	VOC-4 Consol		
on\03 Fie	-	-						-			-					
apture - Cars	2	25 -	Z	SPT-10	7/8/14	CL		Sandy	ean CLAY, very stiff, gray (N 6/1), moist, a little silt			9.9	107.6	El = 71		
urk Water Ca	-3 — - -	30 — - -	Z	SPT-11	13/18/23	SM		Silty S	ND, very dense, olive brown (2.5Y 4/3), moist							
iage Crest Pa	-8 -8 - -	35 — 	Z	SPT-12	10/21/29			(@	5ft) very dense silty fine SAND		-			G / S / F = 0 / 75 / 25		
0101) Carr	-13 — -13 — -	40	Ž	SPT-13	9/10/13	SP-SM		Poorly	graded SAND with SILT, medium dense, light olive b	rown (5Y 6/	/2), moist to wet					
E (4552-	-18	45 —		SPT-14	5/6/13	ML		_			feet AD (15 mins)			G / S / F = 0 / 40 / 60		
16-101	4	-		-		SM SP-SM			ND, medium dense, mottled dark brown (7.5YR 3/4) graded SAND with SILT, very dense, light yellowish b							
ects/TET	-23 -	50 —	Z	SPT-15	11/24/ 50/4"			_trace o	1/4-inch stratified greenish brown (5G 5/1) clay laye					<#200 = 10%		
TS\2016 Proje	-28 — -28 —	55 -						 Notes: 1. Gro 	of boring at 51.5 feet BGS. ndwater at 44.1 feet 15 mins after drilling. s patch in the upper foot, 1-3 feet bentonite chips, 3-	51.5 feet ne	eat cement.					
12 - PROJEC	-33	60 —						-								

TE TETRA TECH

Date(s) Drilled	9/28/	201	6					Logged By Andrew McLarty	Checked By Ferr			nca	
Drilling Method	HSA							Drill Bit Size/Type 8-inch	Total Depth of Borehole 31.5	feet	bgs		
Drill Rig Type	СМЕ	75						Drilling Contractor 2R Drilling Inc.	Approximate Surface Elevation	Approximate Surface Elevation 26.0 feet (GoogleEarth			
Groundv and Date				t enco	untere	d		Sampling Modified California, SPT, Method(s) Environmental	Hammer CME A Data a 30-in			nmer 140 lbs wi	
Borehole Backfill	• Nea	t-ce	emen	t grou	t per L	ACDP	Н	Location SW portion of field. Lattitude: 33.8	•				
		Π		e									
Elevation (feet)	Depth (feet)		Sample Number	Sampling Resistance	USCS Symbol	Graphic Log		MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AN OTHER TEST	
26	0-	╂╂	••	•,	ML] Artificial Fill (af) y SILT, very stiff, light yellowish brown (10YR 6/4), damp, rootle		-	_		
-	-	X	R-1	14/15/17			_ Sandy	y SILT, very suit, light yellowish brown (101K 6/4), damp, roole		9.7	115.9	P-1	
21 -	5-		R-2	10/12/17	CL			IVE] Alluvium (Qa)		15.9	117.2	P-2, VOC-1 DS	
-	-		SPT-3	3/3/5	CH		Orgar	LAY, firm, black (5Y 4/3), moist nic lean CLAY, dark gray (N 4/1) to black (5Y 2.5/1), moist, 3-inc	h lens, visible organic	28.9		LL=56 / PL=29 / PI=27	
16 — -	10-		R-4	10/13/17	CH			rial and organic odor LAY with SAND, very stiff, dark gray (N 4/1) to black (5Y 2.5/1),	moist strong	43.5	74.2	P-3, VOC-2 DS	
	-	d	SPT-5	3/3/5			petrol	liferous odor LAY, firm, dark gray (N 4/1), moist, porous, visible oil along part	-	12.9	98.2	EI = 281	
11 —	15 -	X	R-6	8/10/12			-strong	g petroliferous odor y stiff, dark brown to black (5Y 2.5/1), not porous, no oil, no odol	-	20.0	100.3	P-4, VOC-3 DS uu	
	-	D	SPT-7	4/6/8				LAY with SAND, very stiff, dark gray (N 4/1), moist, porous, visil oot casts, strong petroliferous odor	ble oil along partings			Res = 1080 ohm-cm pH = 7.4 SO4 = 0.0496%	
6	20-	X	R-8	7/7/10	CL		Lean	18.2 ft) interbedded with black silty sand, sands are saturated w CLAY with SAND, stiff, greenish gray (5G 5/1), moist, visible oil liferous odor		22.7	106.4	CI = 0.0213% VOC-4 Consol	
1 1 - -	25 —		SPT-9	8/10/25	SM		Silty S	SAND, dense, light olive gray (5Y 6/2), dry to damp, iron staining	along laminations	-			
-4 —	- 30 —		SPT-10	10/15/23	SM		- Silty S	SAND, dense, light olive gray (5Y 6/2), dry to damp, iron staining	along laminations	1			
	-						 Bottor Notes 	m of boring at 31.5 feet BGS.	-				
-9 -9	35 —							oundwater not encountered. ass re-patched in upper 1 foot, 1-3 feet bentonite chips, 3-31.5 f	eet neat cement.				
-14 —	40 —						_		_				
-	-						-		-				
- -19 —	45 -						-		-				
-							-		-				
-24 -	50 -								-				
]							_						
-29 -	55 —						-		-	1			
-							-						
-34 _	- 60 —	1							-	1			

TE TETRA TECH

Date(s) Drilled	9/28/2	016					Logged By Andrew McLarty	Checked By Fern	and	o Cuer	nca
Drilling Method	HSA						Drill Bit Size/Type 8-inch	Total Depth of Borehole 31.5	feet	bgs	
Drill Rig Type	CME	75					Drilling Contractor 2R Drilling Inc.	Approximate Surface Elevation 28.0 feet (Google Earth			
Ground and Dat	e Meas		ot enco	ountered	d		Sampling Modified California, SPT, Method(s) Environmental	Hammer CME An Data a 30-ind			mmer 140 lbs with
Borehol Backfill	^e Neat	-cemei	91 Longitude: -	118.2	8371						
Packfull Ciris2016 Projects/LE1 16-101E (4552-0101) Carriage Crest Park Water Capture - CarsonW3 Field & Lab/Boring Logs B-1 thru B-5.bg4e0-65 with 2 lab 11 L0160.ppl T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(teet) (t	R-1 R-2 SPT-5 R-4 SPT-7 R-6 SPT-7 R-8 SPT-5	9/15/16 4/11/15 6/8/11 11/25/30 5/11/25 24/ 50/6*		Contraction Contraction <thcontraction< th=""> <thcontraction< th=""></thcontraction<></thcontraction<>	[FILL] Silty S (@2 Silty I Silty I Silty I Corgan matter Corgan MATI Corgan Matter Corgan Matter Sandy Silty S Silty Silty S Silty Silty S Silty Silty S Silty Silty Si	3 ft) stiff, dark gray to black (5Y 2.5/1), trace of red brick fragments VE] Alluvium (Qa) ic lean CLAY, stiff, dark brown to greenish gray (5G 5/1), moist, vi ; possible marsh or quagmire? CLAY with SAND, very stiff, olive gray (5Y 6/2), moist, carbonate s stions CLAY, hard, yellowish brown (10YR 6/4), damp, iron staining alony SILT, very stiff, olive gray (5Y 6/2), moist AND, dense, light yellowish brown (10YR 6/3), damp 21 ft) very dense, moist ne SAND, medium dense, light yellowish brown (10YR 6/3), damp partings	, moist, trace of s, organic odor isible orgainc staining along g partings	8.7 15.8 8.6 NP	113.9 109.5 98.4	REMARKS AND OTHER TESTS P-1 P-2, VOC-1 P-3, VOC-2 LL=37 / PL=20 / PI=17 <#200 = 51%
	55										
-32	и ₆₀ —										

TETRA TECH

Τt

Appendix B

Logs of Cone Penetration Tests (CPTs)

SUMMARY

OF CONE PENETRATION TEST DATA

Project:

Carriage Crest Park 23800 S. Figueroa Street Carson, CA September 27, 2016

Prepared for:

Mr. Fernando Cuenca Tetra Tech BAS 1360 Valley Vista Drive Diamond Bar, CA 91765 Office (909) 860-5096 / Fax (909) 860-5094

Prepared by:

Kehoe Testing & Engineering

5415 Industrial Drive Huntington Beach, CA 92649-1518 Office (714) 901-7270 / Fax (714) 901-7289 www.kehoetesting.com

TABLE OF CONTENTS

1. INTRODUCTION

- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

APPENDIX

- CPT Plots
- CPT Classification/Soil Behavior Chart
- Interpretation Output (CPeT-IT)
- CPeT-IT Calculation Formulas

SUMMARY

OF CONE PENETRATION TEST DATA

1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the Carriage Crest Park project located at 23800 S. Figueroa Street in Carson, California. The work was performed by Kehoe Testing & Engineering (KTE) on September 27, 2016. The scope of work was performed as directed by Tetra Tech BAS personnel.

2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at seven locations to determine the soil lithology. Groundwater measurements and hole collapse depths provided in **TABLE 2.1** are for information only. The readings indicate the apparent depth to which the hole is open and the apparent water level (if encountered) in the CPT probe hole at the time of measurement upon completion of the CPT. KTE does not warranty the accuracy of the measurements and the reported water levels may not represent the true or stabilized groundwater levels.

LOCATION	DEPTH OF CPT (ft)	COMMENTS/NOTES:
CPT-1	50	Hole open to 38.6 ft (dry)
CPT-2	50	Hole open to 39.0 ft (dry)
CPT-3	50	Hole open to 39.0 ft (dry)
CPT-4	50	Hole open to 38.6 ft (dry)
CPT-5	50	Hole open to 23 ft (dry)
CPT-6	50	Hole open to 39.0 ft (dry)
CPT-7	50	Hole open to 20.0 ft (dry)

 TABLE 2.1
 Summary of CPT Soundings

3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by **KTE** using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone and recorded the following parameters at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Inclination
- Sleeve Friction (fs)
- Penetration Speed
- Dynamic Pore Pressure (u)

The above parameters were recorded and viewed in real time using a laptop computer. Data is stored at the KTE office for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly.

4. CONE PENETRATION TEST DATA & INTERPRETATION

The Cone Penetration Test data is presented in graphical form in the attached Appendix. These plots were generated using the CPeT-IT program. Penetration depths are referenced to ground surface. The soil classification on the CPT plots is derived from the attached CPT Classification Chart (Robertson) and presents major soil lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used along with cone resistance to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

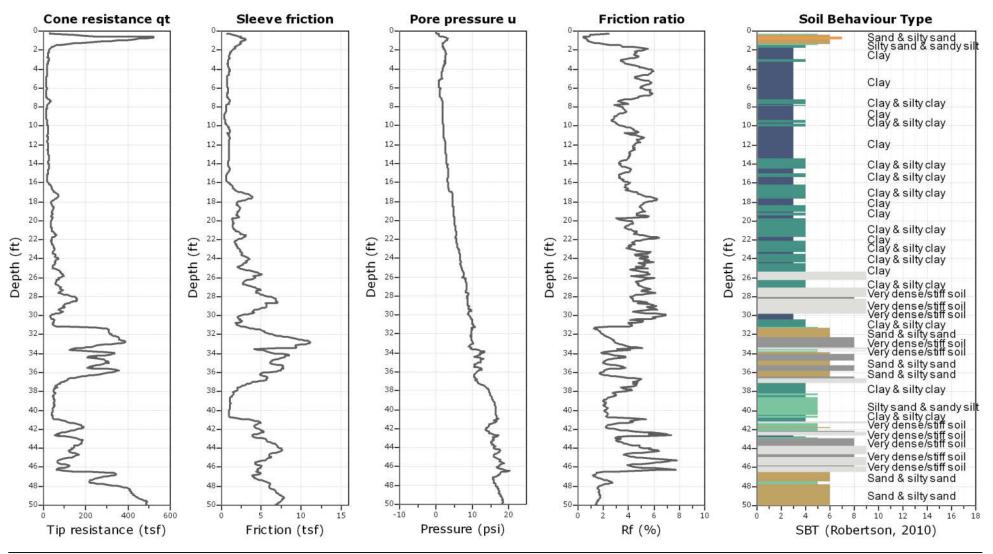
Tables of basic CPT output from the interpretation program CPeT-IT are provided for CPT data averaged over one foot intervals in the Appendix. Spreadsheet files of the averaged basic CPT output and averaged estimated geotechnical parameters are also included for use in further geotechnical analysis. We recommend a geotechnical engineer review the assumed input parameters and the calculated output from the CPeT-IT program. A summary of the equations used for the tabulated parameters is provided in the Appendix.

It should be noted that it is not always possible to clearly identify a soil type based on qc, fs and u. In these situations, experience, judgement and an assessment of the pore pressure data should be used to infer the soil behavior type.

If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

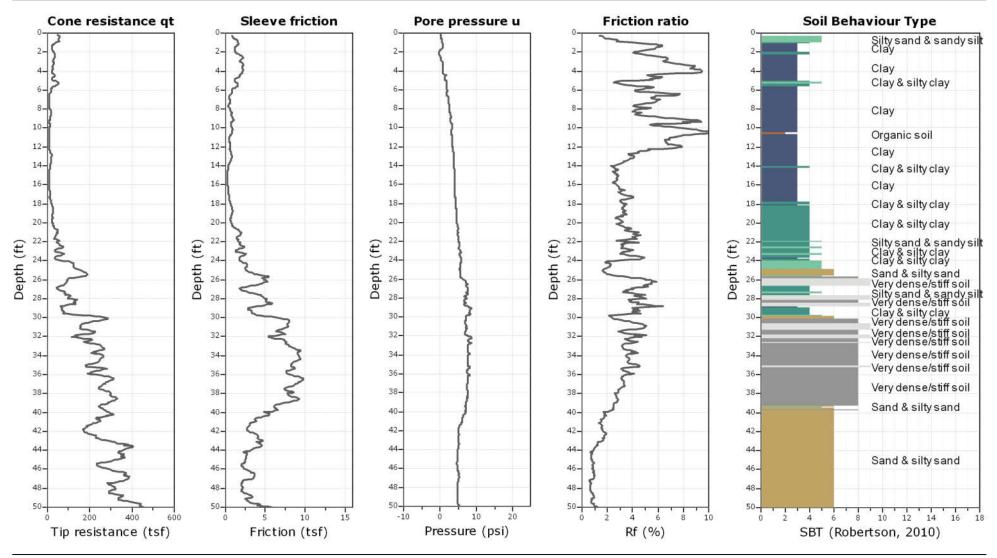
Kehoe Testing & Engineering


Richard W. Koester, Jr. General Manager

10/06/16-ms-7525-1

APPENDIX

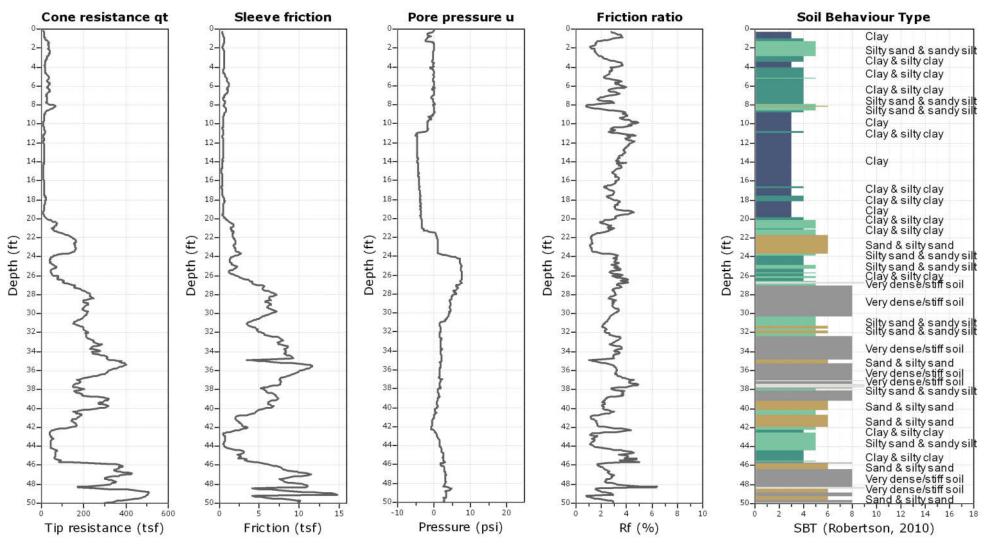
Project: Tetra Tech BAS/Carriage Crest Park Location: 23800 S. Figueroa St Carson, CA



CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 9/28/2016, 4:33:04 PM Project file: C:\TetraTechCarson9-16\CPeT Data\Plot Data\Plots.cpt

CPT: CPT-1 Total depth: 50.33 ft, Date: 9/27/2016 Cone Type: Vertek

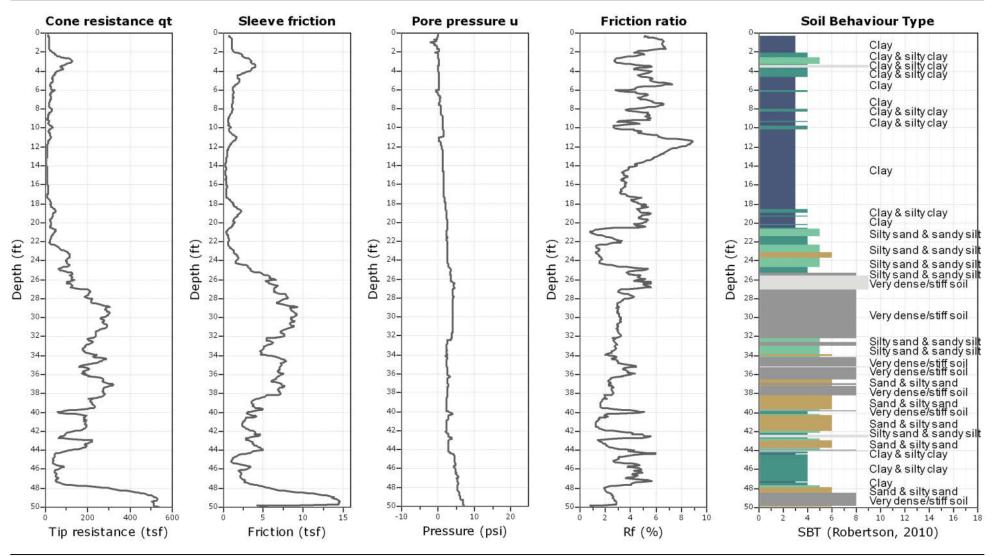
Project: Tetra Tech BAS/Carriage Crest Park Location: 23800 S. Figueroa St Carson, CA



CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 9/28/2016, 4:32:28 PM Project file: C:\TetraTechCarson9-16\CPeT Data\Plot Data\Plots.cpt

CPT: CPT-2 Total depth: 50.48 ft, Date: 9/27/2016 Cone Type: Vertek

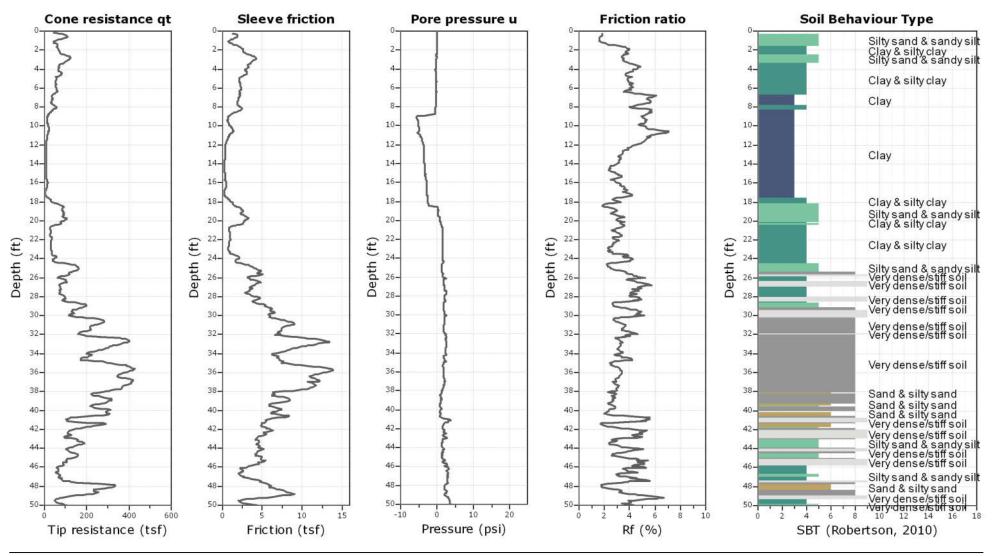
Project: Tetra Tech BAS/Carriage Crest Park Location: 23800 S. Figueroa St Carson, CA



CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 9/28/2016, 4:31:52 PM Project file: C:\TetraTechCarson9-16\CPeT Data\Plot Data\Plots.cpt

CPT: CPT-3 Total depth: 50.27 ft, Date: 9/27/2016 Cone Type: Vertek

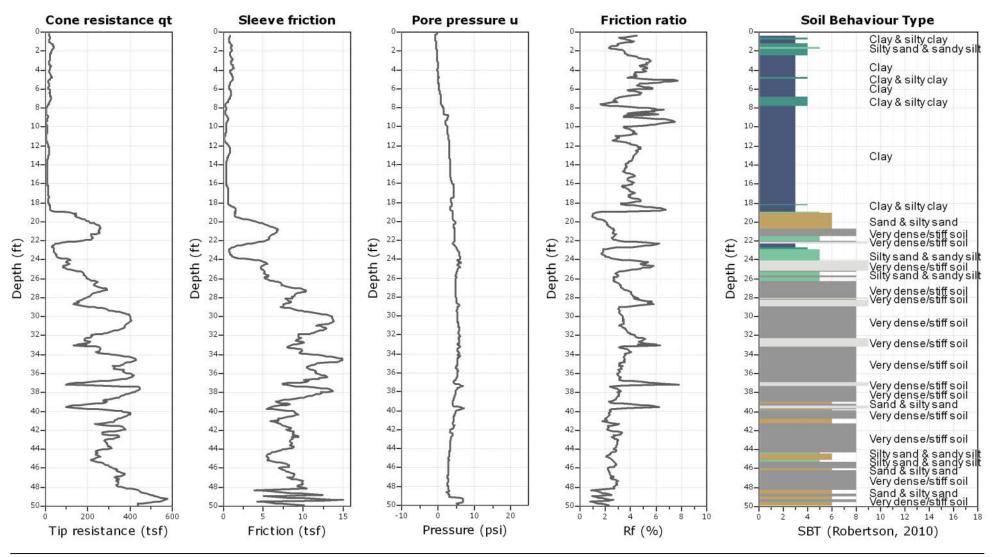
Project: Tetra Tech BAS/Carriage Crest Park Location: 23800 S. Figueroa St Carson, CA



CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 9/28/2016, 4:31:17 PM Project file: C:\TetraTechCarson9-16\CPeT Data\Plot Data\Plots.cpt

CPT: CPT-4 Total depth: 50.27 ft, Date: 9/27/2016 Cone Type: Vertek

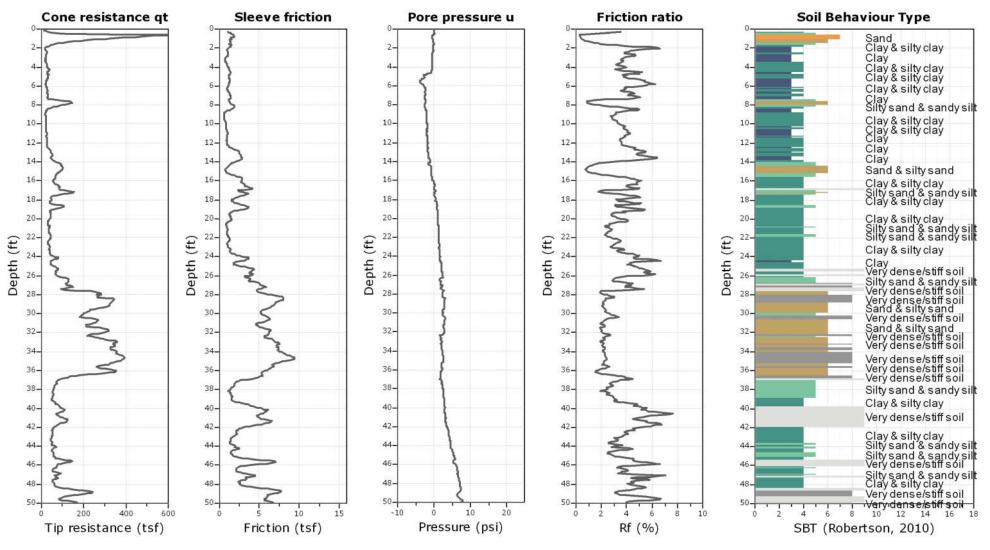
Project: Tetra Tech BAS/Carriage Crest Park Location: 23800 S. Figueroa St Carson, CA



CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 9/28/2016, 4:30:37 PM Project file: C:\TetraTechCarson9-16\CPeT Data\Plot Data\Plots.cpt

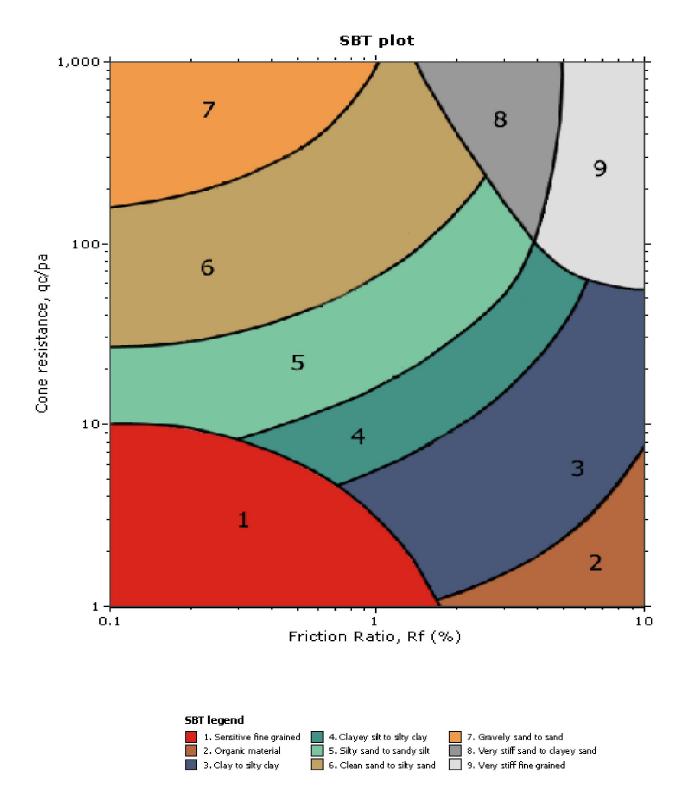
CPT: CPT-5 Total depth: 50.42 ft, Date: 9/27/2016 Cone Type: Vertek

Project: Tetra Tech BAS/Carriage Crest Park Location: 23800 S. Figueroa St Carson, CA



CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 9/28/2016, 4:29:56 PM Project file: C:\TetraTechCarson9-16\CPeT Data\Plot Data\Plots.cpt

CPT: CPT-6 Total depth: 50.27 ft, Date: 9/27/2016 Cone Type: Vertek


Project: Tetra Tech BAS/Carriage Crest Park Location: 23800 S. Figueroa St Carson, CA

CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 9/28/2016, 4:29:05 PM Project file: C:\TetraTechCarson9-16\CPeT Data\Plot Data\Plots.cpt

CPT: CPT-7 Total depth: 50.33 ft, Date: 9/27/2016 Cone Type: Vertek

	CPT-1	In situ	data								Basi	c output	data							
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo (tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn
(ff) 1	352.1	2.79	2.88	1.08	352.135	0.7923	6	1.46639	132.0812	0.06604	0		5331.1	0.7925	0.0006	7	0.3269	2.4765	1.2486	824.0258
2	26.1	1.37	2.42	0.79	26.1296	5.2431	3	2.84211	120.5334	0.12631	0	0.1263	205.87	5.2686	0.0067	9				124.3932
3	26	0.92	2.53	0.82	26.031	3.5343	4	2.72934	117.6107	0.18511	0	0.1851	139.62	3.5596	0.0071	5	0.7475	3.6806	2.3317	89.90307
4	17.8	0.98	1.93	0.86	17.8236	5.4983	3	2.97925	117.1491	0.24369	0	0.2437	72.141	5.5745	0.0079	4	0.8526	3.497	2.603	58.10107
5	14	0.66	1.65	0.87	14.0202	4.7075	3	3.01574	113.6712	0.30052	0	0.3005	45.653	4.8106	0.0087	4	0.8815	3.033	2.6712	39.32664
6	15.8	0.78	1.17	0.91	15.8143		3		115.1872			0.3581		5.0465		4				38.42494
7	15.5	0.73	1.29	0.99	15.5158		3		114.656					4.8343						33.32672
8	15.8	0.56	1.91	1	15.8234		3		112.7641	0.47183		0.4718			0.009	4				29.80783
9	12.3	0.35	1.81				3		108.7151					2.9671		4		1.897		21.14789
10	20.6 19.8	0.71 0.9	2.1 2.22	1.1	20.6257		4		115.1471 116.7859	0.58376				3.5426 4.6912		4				32.06994
11 12	20.8	0.9	2.22		19.8272 20.8316		3		117.1463					4.6912		3				28.8782 27.98873
12	20.8	0.93	2.56	1.2			3		117.1463	0.75969				4.0198		4		1.3583		29.61983
13	23.0	0.99	2.96	1.21			4		116.4138	0.8179				3.4161						27.96823
15	21.2	0.75	3.34	1.26	21.2302		4		115.6427	0.87572				3.6469		4				23.22708
16	21.1	0.89	3.34		21.8409		3	2.82745	116.94			0.9342			0.0117	3				22.28638
17	52.1	2.4	4.36	1.33	52,1534		4		126.3214					4.6915		4				50.93604
18	37.8	2.14	4.67	1.37	37.8572	5.6528	3		124.7011	1.0597	0	1.0597	34.724	5.8156	0.0091	3				34.72681
19	39.7	2.11	4.96	1.45	39.7607	5.3068	3	2.71545	124.7174	1.12206	0	1.1221	34.436	5.4609	0.0092	3	0.9508	0.9457	2.75	34.53515
20	35.1	1.44	5.15	1.51	35.163	4.0952	4	2.67463	121.6223	1.18287	0	1.1829	28.727	4.2378	0.0109	4	0.9457	0.9	2.7292	28.90124
21	40	1.71	5.53	1.59	40.0677	4.2678	4	2.64611	123.1982	1.24447	0	1.2445	31.197	4.4046	0.0103	4	0.9426	0.8582	2.7134	31.4884
22	37.6	1.95	5.72	1.68	37.67	5.1765	3	2.7242	124.0087	1.30647	0	1.3065	27.833	5.3625	0.0113	3	0.9823	0.8129	2.81	27.9372
23	54.2	2.33	6.1	1.81	54.2747	4.293	4	2.5554	126.2021	1.36957	0	1.3696	38.629	4.4041	0.0083	4	0.9219	0.7883	2.6433	<u>39.4153</u>
24	68.9	3.49	6.82	1.84	68.9835		4		129.7433					5.1666						48.23946
25	42.8	2.3	7.19	1.84		5.3628	3		125.5329					5.5568						27.67708
26	73.9	4.19	7.36	1.91	73.9901		9		131.2517					5.7851		3				47.39149
27	78.9	4.04	8.58	1.99		5.1136	9		131.1449					5.2212		4				48.98103
28	146.4	6.09	8.72	2.18	146.507		8	2.26857	135.654					4.2055		9				92.17947
29	93.1	5.68	9.05	2.22	93.2108		9		134.0411					6.2112		3				53.25329
30	34.8	2.39	9.16		34.9121		3		125.312			1.8259		7.2236		3				18.12036
31 32	45.6 320.8	1.95 6.52	10.3 9.86	1.99 1.93	45.7261 320.921		4		124.4813 137.28			1.9568		4.4482 2.0441		6				23.21734 198.826
32	320.8	10.64	10.32	2.01	327.026		6 8	1.99032	137.28					3.2738		8		0.6152		198.9677
34	334	6.85	10.52	2.01	334.156		6	1.81336	137.28					2.0629		6		0.6262		196.509
35	301.8	6.09	12.72	1.95	301.948		6		137.28					2.0029		-				171.6639
36	317.7	5.69	11.4	2.03		1.7902	6		137.0459					1.8029		6				178.9943
37	93.9	4.03	11.25	2.03	94.0377		9		131.5516		0			4.3928		4				41.18042
38	46.7	1.75	14.59	2.01	46.8786		4		123.7503		0			3.9308		3				18.87317
39	52.8	1.07	15.74	2.01	52.9927	2.0192	5	2.3367	120.4496	2.41911	0	2.4191	20.906	2.1157	0.0224	4	0.9701	0.4484	2.6389	21.42991
40	44.6	0.95	16.5	2.09	44.802	2.1204	5	2.40602	119.1697	2.4787	0	2.4787	17.075	2.2446	0.0281	4	1	0.4269	2.7341	17.0748
41	77	3.67	17.12	2.09	77.2096	4.7533	4	2.48608	130.386	2.54389	0	2.5439	29.351	4.9152	0.0165	3	1	0.4159	2.7683	29.35097
42	157.6	4.75	13.87	2.01		3.0107	5		134.0164	2.6109				3.0614		5	0.8772	0.4528	2.3718	66.40054
43	162.7	5.46	15.91	1.97	162.895		8		135.1137					3.4079		4	0.8939			66.01459
44	136.9	7.41	15.93	2.02	137.095		9		136.9276					5.5155		4				49.47128
45	125.9	6.17	16.09	2.05	126.097		9		135.3836					5.0048	0.0094	4		0.3785		44.1013
46	100.8	4.97	16.93	2.18	101.007		9	2.42413	133.26		0			5.0649	0.0124	3				34.05684
47	285.6	3.96	16.93	2.28	285.807		6		134.1346			2.9483			0.0043	6				127.0663
48	352.6	6.02	16.59	2.34	352.803		6	1.73358	137.28		0			1.7211		6				153.4442
49	429.8	7.38	17.8	2.33	430.018		6	1.69032	137.28			3.0856			0.003	6				187.7803
50	487.9	0	18.22	2.3	488.123	0	0	0	120.9	3.14604	0	5.140	154.15	U	0.0027	0	1	0.3363	0	0

11 6.6 0.48 3.44 0.04 6.64211 7.266 3 3.38567 109.519 0.64366 0 0.6437 9.3192 8.0021 0.0131 3 1 1.520 3.2 13 19.9 0.81 3.29 0.6 19.348 4.0606 3 2.85659 16.0279 0.75756 0 0.7576 2.532 4.209 0.0417 3 0.9438 1.227 3.0 14 13.5 0.25 4.01 0.8 9.0490 2.7677 3 3.0333 10.5011 0.8648 0 0.8647 9.633 0.025 3 1 1.227 3.0 16 10.1 0.28 4.11 0.21 1.5153 2.9913 10.6013 0.9779 0 0.973 1.41 3.3945 1.0137 3.9914 1.9917 3.044 3.940 0.017 3 0.415 3.9172 2.787 3.3 3.333 1.5019 1.6872 2.66 3.040 0.133 1.5763 3.011 1.5783 3.0318 1.5019 1.9919 1.3021 <th>T-2</th> <th></th>	T-2	
1 0.57 0.57 0.06 40.507 3.8799 4 2.61361 122.5998 0.0613 0.0013 6593 3.8818 0.001 8 0.6561 6.4808 2.10 2 30.5 1.26 0.29 0.5 30.4665 4.1316 4 2.7256 0.1215 250.11 4.1482 .7644 8 0.0715 5.265 1.2 1.067 0.32 2.0082 9.121 15.656 0.3444 0 0.324 4.724 4.506 0.0615 4.6084 2.7443 3 2.6764 1.0566 0.3444 0 0.3444 0.0324 5.72 0.537 2.537 2.53 4.922 2.930 8.2222 5.944 1.0566 0.3476 1.0736 0.374 0.0473 2.933 5.0673 0.0171 3 0.4574 3 0.5663 0.0171 3 0.4574 3.1576 0.9173 7.558 0.02171 7.558 0.0171 7.558 0.0173 3.0173 3 <t< th=""><th>sf)</th><th>Qtn</th></t<>	sf)	Qtn
2 30.5 1.26 -0.29 0.124 0 0.1212 50 1.1 4.482 7.40 8 0.712 5 0.0182 153.29 6.4586 0.0016 9 0.8045 4.762 2.27 5 2.63 1.2 1.66 0.04 2.5029 1.27 2.7476 3 2.7846 10.5266 0.3044 9.0356 5.528 0.021 4.5066 0.0162 4.5066 0.001 4.506 0.3044 4.506 0.021 4.5066 0.001 4.506 0.021 4.5066 0.0121 7.267 0.22 0.22 3.200 1.1014 1.602 0.3044 0.0417 1.005 2.201 0.324 0.0473 0.0473 0.013 0.4175 0.0473 0.013 0.014 3 0.0473 0.111 0.04175 0.0473 0.013 3.014 1.010 0.013 3.014 1.0179 0.0133 0.0143 3.11 1.16439 1.0143 1.0143 2.0147 3.011 0.0153 0.0173 0.021 0.013 0.0143 3.011 1.16493 1.014 </th <th>-</th> <th>247.7252</th>	-	247.7252
4 23 2.17 0.67 0.03 2.0029 9.4431 3 3.00121 2.25844 0.0444 9.055 9.5328 0.0021 9 0.8093 3.6666 2.70 5 26.9 1.2 1.66 0.04 2.6926 4.4576 3 2.7846 110.628 0.0344 87.42 4.086 0.0455 5.2.318 4.3242 0.002 3 0.4754 2.003 0.175 2.873 0.022 3 0.6473 2.0053 0.171 3 0.643 3 0.663 0.171 0.0473 2.93 0.633 0.171 0 0.4734 0 0.4735 2.931 0.663 0.017 0.3 0.11 0.643 3 1 1.0962 2.06 1 1.1767 3.0 1.1767 3.0 1.1767 3.0 1.1767 3.0 1.1 1.163 0.177421 1.0 1.1767 3.0 1.1 1.16439 3.0 1.1 1.16439 3.0 1.1 1.16439 3.0 1.1 1.0017 3.0 1.0 1.1 1.077 3.		
5 26.9 1.2 1.68 0.4 2.9.206 4.9.6360 0.3044 9.4.26 4.5066 0.0045 4 0.8.104 2.7442 4.8 6 19.3 0.82 2.1 0.02 9.3257 4.2431 3 2.060 10.1924 0.4175 0 0.4175 18.706 2.277 0.022 3 1.2.534 2.88 8 11.3 0.55 2.58 0.01 11.314 7.471 3.3060 10.197 0.3156 0.01316 2.713 3.0663 0.117 3 3.0613 1.1752 6.016 0.4176 18.026 2.3356 0.016316 2.713 3.0613 1.1766 0.017 0.335 0.06 0.4375 2.9315 0.0173 0.328 0.021 0.0413 3 1 1.7667 3.3361 11.1765 0.01695 0 0.6956 0.0248 1.0241 3.311 1.1526 3.33 1.1224 3.311 1.1526 3.9216 1.1512 3.9216 1.1512 3.9216 1.1512 3.9216 1.15126 3.9217 1.414 3.2	28.2	108.7501
6 19.3 0.82 2.1 0.02 19.325 4.2431 3 2.879 116.042 0.36246 0 0.475 5.231 8.4242 0.008 4 0.857 2.503 2.50 7 8.2 0.49 2.39 0 8.2255 5.954 0.11 3 0.6425 2.333 5.055 0.017 3 0.416 1.712 3 0.416 1.712 0.017 <	23	79.31152
7 8.2 0.49 2.39 .0 8.2925 5.9544 3 3.2606 10.1924 0.4756 0 0.4716 18.708 6.2727 0.022 3 1 2.534 2.983 8 11.3 0.55 2.580 0.01 13.136 7.231 3 3.7536 10.177 0.6176 3.737 15.1776 10.177 0.516 2.717 7.580 0.064 3 1 1.990 2.061 10 10.7 0.83 3.80 0.4 0.7414 7.721 3 3.24225 114.6984 0.6395 0 0.6499 3.12 2.0021 0.041 3 1 1.6433 2.82 11 19.9 0.81 3.92 0.06 13.548 2.9844 10.8734 0.8139 0.0.6479 3.92 0.017 3 0.417 1.82 2.9907 1.284 2.818 15 9 0.25 4.01 0.1598 2.5696 4 2.86448 10.8734 0.819 1.068 0.0328 0.025 3.0333 1.1252 <t< td=""><td>26.9</td><td>69.03394</td></t<>	26.9	69.03394
8 11.3 0.55 2.58 0.01 1.316 4.8537 3 3.09643 11.177 0.3737 0 0.4735 2.2933 5.0653 0.0171 3 0.9643 2.1715 2.86 9 1.1. 0.95 2.96 0.08 13.1271 7.3242 11.4649 0.5889 0 0.5889 1.24 8.174 0.0641 3 1.17967 3.0 11 6.6 0.48 3.44 0.04 6.4211 7.2260 3 3.3615 11.1758 6.9955 0 0.6995 0.0699 8.0021 0.0413 3 9.438 1.1715 2.82 13 19.9 0.81 3.92 0.06 19.948 4.0606 3 3.0333 10.51205 0.9463 0.9464 0.3333 0.0171 3 0.9417 1.1152 2.92 14 13.5 0.44 4.2027 1.30513 2.7585 3 2.9336 11.0131 0.9797 0.0181 0.5663 0.9021 3 1.1152 2.92 15 0.44 4.2 <td>19.3</td> <td>44.8705</td>	19.3	44.8705
9 13.1 0.95 2.96 0.08 13.1362 7.219 3 3.1576 116.174 0.53156 0 0.5316 23.713 7.5369 0.0169 3 1 1.9906 2.96 10 10.7 0.83 3.34 0.04 10.714 7.7276 3 3.24229 114.6949 0.6389 0 0.6437 3.912 8.0021 0.0413 3 1 1.4549 3.28 12 7.7 0.62 3.33 0.06 7.4721 8.006 3 3.8567 19.97 0.7575 0 0.0595 0 0.059 10.09 8.002 0.014 3 0.9438 1.5126 2.277 14 13.5 0.41 0.18 9.04908 2.7627 3 3.0333 105.001 0.8648 0 0.8479 4.633 0.0321 3 1 1.1526 2.99 17 13 0.41 4.2 0.271 3.0373 4 2.80941 1.4133 1.0301 0.1374 0.1308 0.13074 0.256 3.504 0.01	8.2	
10 10.7 0.83 3.38 0.04 10.7414 7.721 3 3.2422 11.4689 0.5889 0 0.5889 1.724 8.175 0.024 3 1 1.7967 3.0 11 6.6 0.48 3.44 0.04 6.4211 7.226 3 3.3613 11.7558 0.6995 0.0698 10.028 0.0169 8.022 0.031 3 1.1526 3.2 13 19.9 0.81 3.324 0.06 1.3.48 2.096 4 2.8648 10.6734 0.8119 15.68 2.6696 0.022 4 0.9577 2.834 0.031 3 1 1.1526 3.9 15 9 0.25 4.01 0.26 3.0333 10.0131 0.9178 0 0.918 10.057 3.032 0.11 1.1526 2.99 16 10.1 0.28 4.11 0.23 1.5637 3.0333 1.0521 1.0487 0.911 0.1457 5.9 1.48 1.047 3.43 1.11.1526 2.99 1.11.1526 2.99		
11 6.6 0.48 3.44 0.04 6.64211 7.226 3 3.38567 10.9519 0.64367 9.3192 8.0021 0.0413 3 1 1.6439 3.28 12 7.7 0.62 3.33 0.07 7.7421 8.007 3 3.38567 10.9795 0 0.9596 10.0699 8.022 0.014 3 0.9483 1.777 7.7 14 13.5 0.34 3.92 0.06 13.548 2.5096 4 2.6449 10.6103 0.8119 15.058 2.6666 0.022 4 0.9971 1.2127 3.016 15 9 0.25 4.11 0.25 1.0513 3.151 4 2.9913 10.605 0.9178 0 0.9184 1.057 3.032 0.321 1 1.077 2.75 13 0.41 4.2 0.27 3.3033 3.303 4 2.8019 1.0807 0.973 1.244 3.9402 0.017 3 1.1 1.0752 2.95 14 1.56 6.438 3.3319 </td <td></td> <td></td>		
12 7.7 0.62 3.53 0.06 7.4321 8.007 3 3.3613 111.768 0.6995 0 0.6996 10.069 8.002 0.061 3 1.5126 3.2 13 19.9 0.81 3.92 0.06 15.948 2.5096 4 2.6549 106.0734 0.8119 15.68 2.669 0.0224 4 0.933 3 1 1.2237 3.0 16 10.1 0.28 4.11 0.26 1.01503 2.757 3 3.0333 105.501 0.8648 0 0.8147 9.453 0.021 3 1 1.1526 2.99 17 13 0.41 4.2 0.1503 2.757 3.0373 4 2.8095 11.0101 0.702 1.8047 3.4902 0.017 3 0.9767 1.0523 2.75 18 19.6 0.65 4.39 0.23 3.5673 3.519 4 2.6919 1.10872 2.056 3.004 0.137 4 0.951 2.025 2.666 0.022 0.0137 4		17.23958
13 19.9 0.81 3.92 0.06 19.948 4.0606 3 2.8565 116.027 0.7576 0 0.7576 2.5.32 4.209 0.0147 3 0.9438 1.3707 2.777 14 13.5 0.24 3.92 0.06 13.548 2.506 4 2.86448 108.133 0.01819 15.68 2.6667 0.022 4 0.9577 1.227 3.0 16 10.1 0.28 4.11 0.2 1.0503 2.7585 3 2.9336 10.6005 0.9178 0 0.913 1.041 3.902 0.777 3 1.1 1.1276 2.99 17 13 0.41 4.20 21.9573 3.371 4 2.0591 1.433 0.0180 0.1037 4.017 3 0.972 2.75 19 25.6 0.86 4.68 0.33 2.6573 3.351 4 2.791 1.4682 0 1.476 3.026 3.021 4 0.9572 2.75 20 24.8 0.71 3.569 3.7573		
14 13.5 0.34 3.92 0.06 13.548 2.5096 4 2.86448 108.7343 0.81193 0 0.8119 15.686 2.6966 0.022 4 0.9577 1.284 2.81 15 9 0.25 4.01 0.18 0.94083 2.7857 3 30333 105.001 0.8648 0 0.8647 0.0854 0.0351 3.0323 3 1.1526 2.99 13 0.41 4.2 0.27 13.051 3.141 3 2.9336 10.0131 0.9729 0 0.973 12.414 3.945 0.025 3 0.11 1.565 2.969 3.050 0.17 4 0.957 2.075 2.677 3.057 3.073 4 2.8054 1.0813 1.0807 2.608 3.050 0.017 4 0.957 0.003 2.75 20 2.48 0.74 4.78 0.33 2.547 4 2.60691 12.408 1.1407 2.6079 3.018 0.014 4 0.957 0.084 4.0121 0.8845 2.667		10.06889
15 9 0.25 4.01 0.18 9.0490 2.7627 3 3.0333 105.501 0.8648 0 0.8647 9.4633 3.0353 0.0321 3 1 1.2237 3.0 16 10.1 0.28 4.11 0.26 13.0513 3.7585 3 2.9136 16.0605 0.973 1.0473 3.0218 0.021 3 0.1 1.152 2.99 18 19.6 0.65 4.39 0.23 13.0513 3.0373 4 2.9386 11.0113 0.011 0.1020 18.047 3.0025 3 0.017 4 0.9751 1.0657 3.0976 1.0657 3.219 1.0887 0 1.0487 2.663 0.013 4 0.9751 4 0.9751 1.0463 4 0.9751 0.025 4.012 0.003 4 0.9211 0.8845 2.675 10 4.53 1.37 5.67 0.37 4.862 3.216 1.20815 1.2766 1.2766 1.2766 1.289 6.24 3.101 0.019 4 0.9505		
16 10.1 0.28 4.11 0.26 10.1503 2.7585 3 2.99136 10.6609 0.9178 0 0.918 10.057 3.028 0.021 3 1 1.562 2.99 17 13 0.41 4.2 0.27 13.0514 3.1414 3 2.9336 11.0131 0.9729 0 0.373 1.2414 3.945 0.025 3 0.1077 2 0.9767 1.0265 2.802 19 2.56 0.66 4.68 0.33 2.5673 3.519 4 2.919 11.505 1.4668 0 1.467 2.607 3.1208 0.1468 0.014 4 0.9517 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.925 0.9257 0.925 0.9257 0.925 0.925 0.9257 0.925 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9257 0.9250 0.9257 0.9250		
17 13 0.41 4.2 0.27 13.051 3.141 3 2.9338 10.0131 0.9729 0 0.973 12.41 3.3945 0.025 3 1 1.0875 2.955 18 19.6 0.65 4.39 0.23 19.6573 3.3073 4 2.80545 114.833 1.00812 1.0887 2.566 3.040 0.017 3 0.9767 1.025 2.82 20 24.8 0.74 4.78 0.35 2.48585 2.9769 4 2.60919 115.9052 1.14668 0 1.1467 2.679 3.018 0.1270 3.638 3.922 0.0085 4 0.911 0.887 2.667 3.301 0 1.331 2.587 3.012 0.015 4 0.911 0.845 2.666 0.011 4 0.950 0.841 2.727 2 44.8 1.71 5.16 0.33 3.777 2.614 5 2.207 12.3101 0 1.331 2.546 0.0137 4.9453 0.61 2.49 0.053 5.027 <t< td=""><td></td><td></td></t<>		
18 19.6 0.65 4.39 0.23 19.653 3.3073 4 2.8054 114.383 1.03018 0 1.0302 18.078 3.4902 0.017 3 0.9767 1.0265 2.825 19 25.6 0.86 4.68 0.33 25.6573 3.3519 4 2.7059 1.1466 0 1.1467 2.667 3.100 4 0.9511 0.9727 2.75 21 45.3 1.93 5.06 0.41 45.519 2.2477 4 2.60691 124.364 1.2089 3.528 4 0.917 4 0.9211 0.9852 2.665 22 44.8 1.71 5.16 0.37 44.852 3.816 4 2.6295 12.3473 1.2706 1.305 4.912 0.0085 4 0.915 0.812 1.727 23 35.7 1.28 5.67 0.37 3.769 1.6426 6 1.9356 1.2586 0 1.336 4.067 1.68 0.012 4 0.851 0.702 2.44 25 157 </td <td></td> <td></td>		
19 25.6 0.86 4.68 0.33 25.673 3.3519 4 2.7193 117.0819 1.08872 0 1.0887 2.663 3.004 0.1017 4 0.9511 0.9723 2.757 20 24.8 0.74 4.78 0.35 24.855 2.9769 4 2.6079 12.4386 1.2087 0 1.2087 4.0174 2.014 4 0.921 0.925 <t< td=""><td></td><td></td></t<>		
20 24.8 0.74 4.78 0.35 24.8585 2.9769 4 2.69719 115.9052 1.14668 0 1.1467 20.697 3.128 0.0145 4 0.9527 0.9263 2.77 21 45.3 1.93 5.06 0.41 45.3619 2.547 4 2.6069 12.379 1.208 3.624 4.312 0.008 4 0.921 0.8453 2.66 22 44.8 1.71 5.16 0.37 4.8632 3.816 4 2.6296 12.379 1.2706 1.311 2.547 3.57 3.67 3.7737 2.614 5 2.3207 125.165 1.33101 0.1311 2.548 0.016 4 0.915 0.821 2.052 25 157 2.58 5.62 0.37 1.6463 4 2.819 1.4584 1.578 6.01 1.58 0.016 4 0.891 2.052 2.54 26 9.5 4.817 0.41 9.5785 5.425 9 2.44451 13.019 1.5876 0.151 1.581		
21 45.3 1.93 5.06 0.41 45.361 4.2577 4 26.0691 124.3864 1.2087 0 1.208 3.572 4.3712 0.0083 4 0.911 0.8453 2.66 22 44.8 1.71 5.16 0.37 3.5764 3.5764 3.5769 12.0802 1.3101 0 1.321 2.587 3.768 0.0085 4 0.9105 0.8042 2.72 24 70.7 1.85 6.02 0.38 70.77 2.614 5 2.327 12.5165 1.33359 0 1.5248 0.0167 1.658 0.026 6 0.834 0.831 0.027 2.440 25 157 2.58 5.62 0.37 15.042 0.444 13.019 1.5246 0 1.5248 0.017 1.658 0.021 4 0.835 0.677 2.72 26 6.5 4.87 6.41 0.44 9.6578 5.0425 9 2.44961 1.5246 0 1.5248 0.517 4.813 0.0017 4 0.857 <td< td=""><td></td><td>20.75755</td></td<>		20.75755
22 44.8 1.71 5.16 0.37 44.8632 3.8116 4 2.5769 12.34739 1.27061 0 1.2706 3.4308 3.9227 0.0085 4 0.9180 0.8432 2.62 23 35.7 1.28 5.67 0.37 35.7694 3.5785 4 2.6293 12.0802 1.3101 0 1.311 25.874 3.7168 0.0119 4 0.9505 0.8041 2.72 24 70.7 1.85 6.02 0.38 70.737 2.614 5 2.3207 125.165 1.33309 0 1.5874 4.067 5.065 0.0063 5 0.8321 0.795 2.40 25 1.57 2.58 6.41 0.44 96.575 5.0425 9 2.4451 133.001 1.5874 0.61 4.049 0.8057 0.677 2.72 26 9.65 7.41 0.50 1.679 4.0647 4.0632 4.24598 12.8106 1.8174 0.811 4.0051 4.9163 0.0017 4 0.825 0.638 2.6 <		
24 70.7 1.85 6.02 0.38 70.773 2.614 5 2.327 125.1615 1.39359 0 1.3936 49.785 2.6655 0.003 5 0.8321 0.7925 2.40 25 157 2.58 5.62 0.37 157.069 1.6426 6 1.93564 129.5396 1.4583 0 1.4584 106.7 1.658 0.0026 6 0.6834 0.8031 2.00 26 96.5 4.87 6.41 0.44 96.578 5.0425 9 2.44451 133.001 1.52486 0 1.5243 6.123 0.0123 4 0.8035 0.6767 2.72 28 106.7 5.09 7.41 0.56 106.71 4.763 9 2.3988 133.5704 1.6584 0 1.5871 4.813<	44.8	34.82342
25 157 2.58 5.62 0.37 157.069 1.6426 6 1.93564 129.5396 1.4586 0 1.658 0.0026 6 0.6834 0.8012 2.0 26 96.5 4.87 6.41 0.44 96.5785 5.0425 9 2.44451 133.0019 1.52486 0 1.521 2.036 5.1234 0.0049 4 0.8915 0.722 2.54 27 46.9 1.91 7.74 0.52 46.9947 4.0643 4 2.5818 12.4364 1.5876 0 1.581 4.013 0.012 4 0.8873 0.672 7.72 28 106.7 5.09 7.41 0.6 16.791 4.763 9 2.3983 13.5704 1.6538 0 1.581 4.8413 0.0057 4 0.8873 0.672 7.7 7.6 0.84 1.9329 1.7181 0 1.7867 15.45 2.3725 0.019 5 0.7 0.638 2.06 30 272.3 6.42 7.72 7.26 0.84 15.	35.7	26.16947
26 96.5 4.87 6.41 0.44 96.5785 5.0425 9 2.44451 133.009 1.52486 0 1.5249 6.2336 5.1234 0.0049 4 0.8915 0.722 2.544 27 46.9 1.91 7.74 0.52 46.9947 4.0643 4 2.58198 124.3964 1.58706 0 1.5871 8.611 4.203 0.0123 4 0.9635 0.6767 2.72 28 106.7 5.09 7.41 0.56 106.79 4.7663 9 2.3983 133.570 1.6538 0.517 4.813 0.001 4 0.8873 0.6785 2.676 29 7.12 2.92 8.41 0.64 7.102 4.0952 4.9595 137.28 1.7867 0 1.5165 8.3774 4.968 0.0047 9 0.8878 0.613 2.444 31 157.2 7.72 7.26 0.84 157.28 4.339 1.3728 1.7867 0 1.5854 8.3774 4.9688 0.0041 9 0.8687 0.6139	70.7	52.14081
27 46.9 1.91 7.74 0.52 46.9947 4.0643 4 2.58198 124.3964 1.58706 0 1.5871 28.611 4.2063 0.0123 4 0.9635 0.6767 2.72 28 106.7 5.09 7.41 0.56 106.791 4.7663 9 2.39838 133.5704 1.65384 0 1.6538 6.3.571 4.813 0.0051 4 0.8873 0.672 2.72 29 7.12 2.92 8.41 0.64 71.3029 4.0952 4 2.4598 128.519 1.7181 0 1.7181 40.501 4.1963 0.0087 4 0.9255 0.6385 2.60 30 272.3 6.42 7.16 0.73 272.388 2.3569 6 1.91253 137.28 1.85538 0 1.8554 8.3774 4.9688 0.0047 9 0.8687 0.6139 2.44 32 125.6 5.45 7.79 0.76 125.695 4.3359 9 2.32279 137.48 1.99126 0 1.9913 126.5	157	118.1103
28 106.7 5.09 7.41 0.56 106.791 4.7663 9 2.39838 133.5704 1.65384 0 1.6538 6.3.571 4.8413 0.0051 4 0.8873 0.6728 2.51 29 71.2 2.92 8.41 0.64 71.3029 4.0952 4 2.4598 128.519 1.7181 0 1.7181 4.051 4.1963 0.0087 4 0.9255 0.6385 2.60 30 272.3 6.42 7.16 0.73 272.38 2.3569 6 1.91253 137.28 1.7867 0 1.7867 151.45 2.3725 0.001 5 0.7 0.693 2.00 31 157.2 7.72 7.26 0.84 157.289 4.9082 9 2.3097 137.28 1.85538 0 1.8554 8.3774 4.9068 0.0044 9 0.8687 0.6139 2.444 32 125.6 5.45 7.79 0.76 125.695 3.1627 8 2.02828 137.28 1.99126 0 1.9913 126.5 <	96.5	64.85692
29 71.2 2.92 8.41 0.64 71.3029 4.0952 4 2.4598 128.5192 1.7181 0 1.7181 40.501 4.1963 0.0087 4 0.9255 0.6385 2.6 30 272.3 6.42 7.16 0.73 272.388 2.3569 6 1.91253 1.37.28 1.78674 0 1.7867 1.51.45 2.3725 0.0019 5 0.7 0.693 2.00 31 157.2 7.72 7.26 0.84 157.289 4.9082 9 2.3097 137.28 1.85538 0 1.8554 8.3.774 4.968 0.0047 9 0.8687 0.6139 2.444 32 125.6 5.45 7.79 0.76 125.695 4.3359 9 2.3227 137.28 1.99126 0 1.9913 126.5 3.1877 0.002 5 0.6767 0.6155 2.164 32 253.8 8.03 7.74 0.68 253.895 3.1627 8 2.02687 137.28 2.19918 0 1.2185 3.1877	46.9	29.03797
30 272.3 6.42 7.16 0.73 272.38 2.3569 6 1.91253 1.37.28 1.78674 0 1.7867 151.45 2.3725 0.0019 5 0.7 0.693 2.000 31 157.2 7.72 7.26 0.84 157.289 4.9082 9 2.3097 137.28 1.85538 0 1.8554 8.3.774 4.9668 0.0044 9 0.8687 0.6139 2.44 32 125.6 5.45 7.79 0.76 125.695 4.3359 9 2.3227 134.679 1.92262 0 1.9213 126.5 3.1877 0.002 5 0.7676 0.6155 2.164 33 253.8 8.03 7.74 0.68 253.895 3.1627 8 2.06281 137.28 2.0599 0 1.9133 126.5 3.1877 0.002 5 0.7676 0.6155 2.164 34 264.4 9.22 7.84 0.71 264.496 3.4859 8 2.02807 137.28 2.12854 0 2.1285 8.0203	06.7	66.85233
31 157.2 7.72 7.26 0.84 157.289 4.9082 9 2.3097 137.28 1.85538 0 1.8554 8.3.774 4.9668 0.0034 9 0.8687 0.6139 2.44 32 125.6 5.45 7.79 0.76 125.695 4.3359 9 2.3227 134.679 1.92262 0 1.9216 64.377 4.032 0.0045 4 0.885 0.5895 2.4 33 253.8 8.03 7.74 0.68 253.895 3.1627 8 2.03628 137.28 1.99126 0 1.9913 126.5 3.1877 0.0022 5 0.7676 0.6155 2.16 34 264.4 9.22 7.84 0.71 264.496 3.4859 8 2.06281 137.28 2.10599 12 3.1877 0.0022 5 0.7676 0.6155 2.16 35 187.7 8.27 7.64 0.73 187.794 4.4038 9 2.22807 137.28 2.19718 0 2.1285 8.7227 4.4543 0.002		41.99133
32 125.6 5.45 7.79 0.76 125.695 4.3359 9 2.32279 134.4679 1.92262 0 1.9226 64.377 4.032 0.0045 4 0.885 0.5895 2.4 33 253.8 8.03 7.74 0.68 253.895 3.1627 8 2.03628 137.28 1.99126 0 1.9913 126.5 3.1877 0.0022 5 0.7676 0.6155 2.16 34 264.4 9.22 7.84 0.71 264.496 3.4859 8 2.06281 137.28 2.0599 0 2.0599 127.4 3.5132 0.0022 8 0.783 0.5935 2.19 35 187.7 8.27 7.64 0.73 187.794 4.4038 9 2.22807 137.28 2.12854 0 2.1285 87.227 4.453 0.002 8 0.8268 0.5469 2.2386 1.9172 97.53 3.7425 0.002 8 0.8268 0.5469 2.2486 2.24858 10.701 3.366 0.0021 8 0.5469 2.19 <td></td> <td></td>		
33 253.8 8.03 7.74 0.68 253.895 3.1627 8 2.03628 137.28 1.99126 0 1.9913 126.5 3.1877 0.0022 5 0.7676 0.6155 2.16 34 264.4 9.22 7.84 0.71 264.496 3.4859 8 2.06281 137.28 2.0599 0 2.0599 127.4 3.5132 0.0022 8 0.783 0.5935 2.19 35 187.7 8.27 7.64 0.73 187.794 4.4038 9 2.22807 137.28 2.12854 0 2.1285 87.227 4.453 0.003 9 0.8612 0.5477 2.38 36 216.4 8.02 7.72 0.71 216.494 3.7045 8 2.13144 137.28 2.19718 0 2.1972 97.53 3.7425 0.0026 8 0.8268 0.5466 2.2 37 267.3 8.91 7.64 0.77 267.394 3.3322 8 2.94362 137.28 2.3846 0 2.4568 117.01 <t< td=""><td></td><td></td></t<>		
34 264.4 9.22 7.84 0.71 264.496 3.4859 8 2.06281 137.28 2.0599 0 2.0599 127.4 3.5132 0.0022 8 0.7833 0.5935 2.19 35 187.7 8.27 7.64 0.73 187.794 4.4038 9 2.22807 137.28 2.12854 0 2.1285 87.227 4.4543 0.003 9 0.8612 0.5477 2.38 36 216.4 8.02 7.72 0.71 216.494 3.7045 8 2.13144 137.28 2.19718 0 2.1972 97.53 3.7425 0.0026 8 0.8268 0.5466 2.2 37 267.3 8.91 7.64 0.77 267.394 3.3322 8 2.04362 137.28 2.26582 0 2.2658 117.01 3.3606 0.0021 8 0.7944 0.5461 2.19 38 301.9 7.75 7.74 0.81 301.995 2.5663 8 1.91355 137.28 2.33446 0 2.3345 128.36		68.95281
35 187.7 8.27 7.64 0.73 187.794 4.4038 9 2.22807 137.28 2.12854 0 2.1285 87.227 4.4543 0.003 9 0.8612 0.5477 2.38 36 216.4 8.02 7.72 0.71 216.494 3.7045 8 2.13144 137.28 2.19718 0 2.1972 97.53 3.7425 0.0026 8 0.8268 0.5466 2.2 37 267.3 8.91 7.64 0.77 267.394 3.3322 8 2.04362 137.28 2.26582 0 2.2658 117.01 3.3606 0.0021 8 0.7944 0.5461 2.19 38 301.9 7.75 7.74 0.81 301.995 2.5663 8 1.91355 137.28 2.33446 0 2.3345 128.36 2.5083 0.0019 5 0.7498 0.5525 2.07 39 286.9 7.44 7.35 0.85 286.99 2.5924 8 1.93486 137.28 2.4031 0 2.4031 18.43		
36 216.4 8.02 7.72 0.71 216.494 3.7045 8 2.13144 137.28 2.19718 0 2.1972 97.53 3.7425 0.0026 8 0.8268 0.5466 2.2 37 267.3 8.91 7.64 0.77 267.394 3.3322 8 2.04362 137.28 2.26582 0 2.2658 117.01 3.3606 0.0021 8 0.7944 0.5461 2.19 38 301.9 7.75 7.74 0.81 301.995 2.5663 8 1.91935 137.28 2.33446 0 2.3345 128.36 2.5863 0.0019 5 0.7498 0.5525 2.07 39 286.9 7.44 7.35 0.85 286.99 2.5924 8 1.93486 137.28 2.4031 0 2.4031 118.43 2.6133 0.0019 5 0.7631 0.5347 2.09		
37 267.3 8.91 7.64 0.77 267.394 3.3322 8 2.04362 137.28 2.26582 0 2.2658 117.01 3.3606 0.0021 8 0.7944 0.5461 2.19 38 301.9 7.75 7.74 0.81 301.995 2.5663 8 1.91935 137.28 2.33446 0 2.3345 128.36 2.5863 0.0019 5 0.7498 0.5525 2.07 39 286.9 7.44 7.35 0.85 286.99 2.5924 8 1.93486 137.28 2.4031 0 2.4031 118.43 2.6143 0.0019 5 0.7631 0.5347 2.09		110.6954
38 301.9 7.75 7.74 0.81 301.995 2.5663 8 1.91935 137.28 2.33446 0 2.3345 128.36 2.5863 0.0019 5 0.7498 0.5525 2.07 39 286.9 7.44 7.35 0.85 <mark>286.99 2.5924 8 1.93486 137.28 2.4031 0 2.4031 118.43 2.6143 0.0019 5 0.7631 0.5347 2.09</mark>		
39 286.9 7.44 7.35 0.85 <mark> 286.99 2.5924 8 1.93486 137.28 2.4031 0 2.4031 118.43 2.6143 0.0019 5 0.7631 0.5347 2.09</mark>		
41 240.7 3.86 6.15 0.77 <mark>240.775 1.6032 6 1.80808 133.5293 2.53778 0 2.5378 93.876 1.6202 0.0019 6 0.7313 0.5274 1.99</mark>		
		78.87831
43 292.7 4.66 5.25 0.93 292.764 1.5917 6 1.75457 135.3843 2.6708 0 2.6708 108.62 1.6064 0.0013 6 0.7169 0.5149 1.94		
44 354.4 3.11 5.06 0.93 354.462 0.8774 6 1.49865 132.8918 2.73724 0 2.7372 128.5 0.8842 0.001 6 0.6185 0.5555 1.67	54.4	
45 326.3 2.5 4.91 0.93 326.36 0.766 6 1.47695 131.0928 2.80279 0 2.8028 115.44 0.7727 0.0011 6 0.6184 0.5475 1.66		
46 292.9 2.49 4.87 0.87 292.96 0.85 6 1.54185 130.8001 2.86819 0 2.8682 101.14 0.8584 0.0012 6 0.6525 0.5217 1.7	92.9	143.027
47 381.4 3.33 5.25 0.81 <mark>381.464 0.873 6 1.47703 133.5709 2.93498 0 2.935 128.97 0.8797 0.001 6 0.6245 0.5288 1.66</mark>	81.4	189.1854
48 319.1 2.17 4.87 0.71 319.16 0.6799 6 1.44526 130.0025 2.99998 0 3 105.39 0.6864 0.0011 6 0.624 0.5219 1.65	19.1	155.9344
49 335.5 3.03 5.06 0.64 <mark>335.562 0.903 6 1.52338 132.5674 3.06626 0 3.0663 108.44 0.9113 0.0011 6 0.6578 0.4966 1.73</mark>	35.5	156.0562
50 452.5 5.7 5.43 0.75 452.566 1.2595 6 1.56415 137.28 3.1349 0 3.1349 143.36 1.2683 0.0009 6 0.6684 0.4839 1.75	52.5	205.5284

	CPT-3	In situ	data								Basic	output	data							
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo (tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn
1	18	0.56	-1.69	-0.38	17.9793	3.1147	4	2.81998	113.0756	0.05654	0	0.0565	317.01	3.1245	-0.007	5	0.6872	7.4866	2.1929	126.8111
2	33.7	0.4	0	-0.38		1.1869	5		112.146	0.11261		0.1126		1.1909	0	6	0.5847			117.6385
3	26.9	0.56	-0.1	-0.41	26.8988		4		114.0582	0.16964		0.1696		2.0951	-3E-04	5	0.6844			88.42455
4	17.1	0.55	-0.06	-0.41	17.0993		3		112.8214	0.22605				3.2596	-3E-04					54.28872
5	32.7	0.73	0	-0.44		2.2324	4		116.4743	0.28429		0.2843			0	5				77.99326
6	30.2	1.13	-0.01	-0.41	30.1999		4		119.4773	0.34403	0	0.344		3.7849	-2E-05					68.64625
7	23.4 53.6	0.62 0.53	-0.08 -0.12	-0.35 -0.31	53.5985	2.6497	4		114.463 115.3369	0.40126 0.45893				2.6959 0.9974	-3E-04 -2E-04	5				47.12792 84.34135
° 9	14.6	0.53	-0.12	-0.31		3.9046	3	2.95158		0.43893				4.0475	-2E-04	4				25.86423
10	9.6	0.37	-1.63	-0.39	9.58005		3		109.7756	0.57016				4.8835	-0.013	3				15.80231
10	14.9	0.51	-4.69	-0.41	14.8426		3		111.9237	0.62612				3.5874	-0.024					21.95312
12	10.7	0.47	-4.58	-0.31	10.6439		3		110.5151	0.68138				4.7177	-0.033	3		1.5529		14.6211
13	12.4	0.48	-4.68	-0.29	12.3427		3		111.0303	0.7369		0.7369		4.1359	-0.029	3				15.73885
14	12.3	0.41	-4.58	-0.36	12.2439		3		109.8573	0.79183	0	0.7918		3.5801	-0.029	3		1.3351		14.4504
15	8.9	0.26	-4.4	-0.41	8.84614		3		105.7318	0.84469		0.8447			-0.04	3		1.2527		9.47263
16	11.9	0.38	-4.11	-0.44	11.8497	3.2068	3	2.97317	109.2215	0.8993	0	0.8993	12.177	3.4702	-0.027	3	1	1.1766	2.9639	12.17654
17	11.5	0.32	-3.96	-0.52	11.4515	2.7944	3	2.9511	107.8807	0.95324	0	0.9532	11.013	3.0481	-0.027	3	1	1.11	2.9664	11.01323
18	20.1	0.61	-3.63	-0.56	20.0556	3.0416	4	2.77609	113.9679	1.01023	0	1.0102	18.853	3.2029	-0.014	4	0.9616	1.0455	2.7924	18.81907
19	13.8	0.44	-3.58	-0.52	13.7562	3.1986	3	2.91999	110.6581	1.06556	0	1.0656	11.91	3.4671	-0.02	3	1	0.993	2.9714	11.90986
20	26	0.8	-3.44	-0.58	25.9579	3.0819	4	2.69213	116.5812	1.12385	0	1.1239	22.097	3.2214	-0.01	4	0.9464	0.9446	2.7384	22.16884
21	49.7	1.47	-3.15	-0.64	49.6614	2.96	4	2.46883	122.6152	1.18515	0	1.1852	40.903	3.0324	-0.005	4	0.8642	0.9067	2.5148	41.53777
22	144.6	1.74	0.86	-0.68	144.611		6	1.86315	126.4558	1.24838				1.2137		6				122.0128
23	160.9	1.9	1.15	-0.69	160.914		6	1.82441	127.36	1.31206				1.1905		6				131.8576
24	51.6	1.65	4.71	-0.73	51.6577		4		123.5565	1.37384		1.3738		3.2814						37.62765
25	66.1	2.2	7.62	-0.68	66.1933		4		126.2662	1.43697	0	1.437		3.3974						46.82574
26	60.5	2.08	7.73	-0.65	60.5946		4		125.6402	1.49979		1.4998		3.5198			0.8981			40.82759
27	152.3	5.02	6.85	-0.64	152.384		8		134.3362	1.56696	0	1.567		3.3285			0.7881			104.5975
28	228.5	7.16	5.89	-0.64	228.572		8	2.05758	137.28	1.6356				3.1551		8				155.1324
29	220.3	6.43	4.58	-0.65	220.356	2.918	8		137.0471	1.70413				2.9408		5				144.9211
30	214.8	6.56	4.28	-0.82	214.852		8		137.1319	1.77269		1.7727		3.0787						136.0367
31 32	152.5 222.2	3.48 5.25	1.89 1.81	-0.94 -0.86	152.523 222.222		5		131.6575 135.5842	1.83852 1.90631		1.8385		2.3095 2.3829	0.0009	5				93.15963 135.1428
33	246.8	5.25 7.44	1.81	-0.86	246.822		6 8	2.02533	135.5642	1.90631	0			3.0386		5	0.7624			135.1428
34	240.0	8.19	2.01	-1.02	263.725		8	2.020078	137.28	2.04359	Ű			3.1298			0.7657			149.401
35	367.4	5.02	2.01	-1.02	367.427		6		136.4828	2.11183				1.3742			0.6201			224.9169
36	319.5	10.28	1.69	-1.02	319.521		8	1.99108	137.28	2.18047				3.2394	0.0004	8				172.7987
37	169	7.57	2.29	-0.97	169.028		9	2.2595	137.28	2.24911				4.5389	0.001	9				80.71439
38	195.6	5.47	1.35	-0.97	195.617		5		135.5735	2.3169		2.3169			0.0005					96.72018
39	316.1	7.39	1.05	-0.93	316.113	2.3378	8	1.87449	137.28	2.38554	0	2.3855	131.51	2.3556	0.0002	5	0.7359	0.5498	2.029	163.0054
40	268.7	5.75	0.73	-0.85	268.709	2.1399	6	1.88108	136.7131	2.4539	0	2.4539	108.5	2.1596	0.0002	5	0.7487	0.5327	2.054	134.0419
41	169	1.96	0	-0.9	169	1.1598	6		127.7071	2.51775	0	2.5178	66.123	1.1773	0	6	0.7381	0.5274	2.018	82.9742
42	138.4	3.56	-0.65	-0.95	138.392	2.5724	5	2.1189	131.5867	2.58354	0	2.5835	52.567	2.6213	-3E-04	5	0.8717	0.4593	2.3608	58.94707
43	46.1	0.74	0.76	-0.73	46.1093	1.6049	5	2.32024	117.412	2.64225	0	2.6423	16.451	1.7024	0.0013	4	0.9961	0.4019	2.6793	16.50896
44	43.9	0.62	1.72	-0.64	43.9211	1.4116	5	2.30337	115.9988	2.70025	0	2.7003	15.266	1.5041	0.003	4	0.9985	0.3924	2.6789	15.28744
45	65	2.76	2.58	-0.86	65.0316	4.2441	4	2.49829	127.8823	2.76419	0	2.7642	22.526	4.4325	0.003	3	1	0.3828	2.8227	22.52645
46	378.8	6.75	2.01	-0.95	378.825	1.7818	6	1.73282	137.28	2.83283	0	2.8328	132.73	1.7953	0.0004	6	0.7144	0.4948	1.9166	175.837
47	405.7	11.47	3.17	-0.95	405.739	2.8269	8	1.89177	137.28	2.90147	0	2.9015	138.84	2.8473	0.0006	5	0.779	0.4557	2.0781	173.504
48	328.1	10.43	3.25	-0.92		3.1785	8	1.98077	137.28	2.97011	0				0.0007	5	0.8261			131.006
49	506.7	14.32	3.44	-0.87	506.742		8	1.84837	137.28	3.03875	0	3.0388		2.8429	0.0005	8		0.4457		212.1528
50	299.6	0	2.67	-0.87	299.633	0	0	0	120.9	3.0992	0	3.0992	95.681	0	0.0007	0	1	0.3414	0	0

	CPT-4	In situ	data								Basic	output	data							
Depth	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn
(ft)		1.08	-1.81	-0.39	16.5779		3		117.6834	0.05884		(tsf) 0.0588	-		-0.008	9	0.775	9.3857	2.4174	146.528
	2 32.2	1.41	-0.07		32.1991	4.379	4		121.2535	0.11947				4.3953	-2E-04	9	0.7226			146.6173
:	3 126.3	3.47	0.38	-0.21	126.305	2.7473	5	2.16627	131.1764	0.18506	0	0.1851	681.52	2.7514	0.0002	8	0.5861	2.7784	1.9122	331.1653
	4 61.1	3.34	0.19	-0.07	61.1023	5.4662	4	2.59835	129.1259	0.24962	0	0.2496	243.78	5.4887	0.0002	9	0.7453	2.9341	2.3204	168.7419
!	5 36.3	2.04	0.38	-0.1	36.3047	5.6191	3	2.76082	124.2488	0.31174	0	0.3117	115.46	5.6678	0.0008	9	0.8106	2.6929	2.4837	91.60389
	5 34.7	1.2	0.09	-0.18	34.7011	3.4581	4	2.62914	120.256	0.37187				3.4956		5	0.7761	2.2513	2.3855	73.04172
		1.17	0.57	-0.15	23.307	5.02	3	2.8659	119.1	0.43142				5.1146		4				47.35685
:		1.18	0.76	-0.19	29.7093		4		119.7542	0.4913						4				52.47211
9		0.61	1.34		11.1164		3		112.5287	0.54756				5.7717		3				19.29499
10		0.8	1.34	-0.02	30.0164		4		116.9355	0.60603	0			2.7201		4				43.84825
1		1.65	0.85	0.05	25.6104		3		121.8452	0.66695	0		37.399		0.0025	3				36.47892
11		0.68 0.41	1.05	0.06	8.71285 6.91518		3		112.7294 108.4639	0.72332				8.5111 6.6801		3		1.4629		11.04567 7.89354
1.		0.41	1.24 1.34	0.12 0.17		5.929 4.4503	3		105.7853	0.83044	0	0.8304			0.0146	3		1.2742		6.8469
1		0.29	1.54	0.17	8.31873		3		105.7855	0.83044		0.8838			0.017	3		1.1973		8.41291
1		0.41	1.62	0.10	11.4198		3		109.6874	0.9386				3.9118		3				11.16686
1		0.37	1.72	0.10	10.6211		3		109.0071	0.99298	0			3.8429	0.0111	3		1.0656		9.69613
1		1.18	2.1	0.29	24.7257		3		119.3064	1.05263	-					3		1.0051		22,488
19		2.04	2.29	0.34		5.4359	3		124.3296	1.1148						3				32.73231
2		1.39	2.48	0.39	27.6304		3		120.7757	1.17519				5.2542		3				22.5118
2	L 44.6	0.36	2.39	0.52	44.6293	0.8067	5	2.16174	112.0602	1.23122	0	1.2312	35.248	0.8295	0.004	5	0.7545	0.892	2.2209	36.58417
2	2 21.2	0.63	2.48	0.6	21.2304	2.9675	4	2.75001	114.3428	1.28839	0	1.2884	15.478	3.1592	0.009	3	0.999	0.8214	2.8559	15.48125
2	94.1	1.31	2.58	0.68	94.1316	1.3917	5	2.04256	123.3316	1.35005	0	1.3501	68.724	1.4119	0.002	5	0.7174	0.8396	2.1085	73.62318
24	4 98.9	1.58	2.67	0.73	98.9327	1.5971	5	2.06722	124.8242	1.41247	0	1.4125	69.043	1.6202	0.002	5	0.7338	0.809	2.1437	74.56002
2	5 69.4	3.33	3.73	0.81	69.4457	4.7951	4	2.51894	129.4162	1.47717	0	1.4772	46.013	4.8993	0.004	4	0.9187	0.736	2.6214	47.27805
2		6.62	3.63	0.85	130.544		9		135.9833	1.54517		1.5452			0.002	9	0.8606			88.01124
2		6.34	4.36	0.92	178.153		8		136.4254		0			3.5913		8				119.7575
2		7.86	4.11	1.02		3.6499	8	2.12728	137.28	1.68202	0					8				140.9149
2		8.37	4.2	1.1	289.751		8	1.97252	137.28	1.75066				2.9062		8		0.6964		189.543
31		8.55	4.12	1.14		3.2137		2.03138	137.28	1.8193				3.2358						166.4094
3		8.66	4.2	1.2	289.451		8	1.98575	137.28	1.88794				3.0115	0.0011	8	0.7363			177.4395
3: 3:		7.39 5.22	3.92 2.39	1.35 1.33	235.848		8	2.05021	137.28	1.95658				3.1596		5				137.6022
3. 34		5.22	2.39	1.33	189.229 239.131		5		135.1502 136.2222	2.02415 2.09226				2.7884 2.3583	0.0009	5				106.2998 135.1003
3		7.29	2.30	1.29	183.529		6 8	2.19631	130.2222	2.09228				4.0194	0.0008	4				93.28583
3		7.29	2.53	1.29	186.631		8	2.19031	137.28	2.22954		2.2295			0.001	4				92.11069
3		7.33	2.55	1.43	314.132		8	1.87223	137.28	2.22934				2.3314		5	0.7276			167.6121
3		7.24	2.67	1.49	276.933		8	1.94628	137.28	2.36682				2.6369	0.0007	5				140.1433
3		3.52	2.39	1.58	219.629		6		132.6304	2.43314				1.6207	0.0008	5				111.4222
4		2.95	3.01	1.65	60.3368		4		128.1867	2.49723					0.0038	3				23.16148
4		2.46	2.39	1.64	189.729		6		129.6518	2.56206	0			1.3143	0.0009	6				92.00848
4	2 129	3.94	2.29	1.68	129.028	3.0536	5	2.19577	132.1579	2.62814	0	2.6281	48.095	3.1171	0.0013	4				52.25201
43	3 222.3	3.3	3.05	1.77	222.337	1.4842	6		132.1881	2.69423	0	2.6942	81.523	1.5024	0.001	6	0.7463	0.4978	2.0175	103.339
4	115.6	4.8	2.77	1.92	115.634	4.151	9	2.32978	133.3352	2.7609	0	2.7609	40.883	4.2526	0.0018	4	0.9769	0.3919	2.6145	41.8004
4	5 37.9	1.08	4.73	2.05	37.9579	2.8453	4	2.54377	119.7038	2.82075	0	2.8208	12.457	3.0737	0.0097	3	1	0.3751	2.9249	12.45666
4	5 55.6	2.67	4.89	2.09	55.6599	4.797	4	2.58315	127.2602	2.88438	0	2.8844	18.297	5.0592	0.0067	3	1	0.3668	2.9284	18.29698
4	7 59	2.24	5.49	2.22	59.0672	3.7923	4	2.49107	126.1202	2.94744	0	2.9474	19.04	3.9915	0.007	3	1	0.359	2.8485	19.04016
4	3 296	5.75	5.45	2.25	296.067		6	1.82256	136.9496	3.01592				1.9621		5	0.7728			123.2808
4		13.53	6.18	2.4	522.576		8	1.8083	137.28	3.08456	0	3.0846			0.0009	5				219.3071
50	536.1	0	7.34	2.59	536.19	0	0	0	120.9	3.14501	0	3.145	169.49	0	0.001	0	1	0.3364	0	0

	CPT-5	In situ	data								Basic	output	data							
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo (tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn
(ft) 1	55.7	0.91	0	-0.33	55.7	1.6338	5	2.26095	119.386	0.05969	0	(tst) 0.0597	932.11	1.6355	0	6	0.5358	4.6665	1.795	245.3867
2	67.5	2.64	0.1		67.5012		4		127.648					3.9182						260.2042
3	117.3	4.11	-0.1	-0.13	117.299	3.5039	5	2.26824	132.2345	0.18963	0	0.1896	617.55	3.5096	-6E-05	8	0.6237	2.9216	2.0096	323.3598
4	65.4	2.94	-0.1	-0.02	65.3988	4.4955	4	2.51519	128.3583	0.25381	0	0.2538	256.66	4.513	-1E-04	9	0.7168	2.7825	2.2454	171.3137
5	55.2	2.12	-0.1	0	55.1988	3.8407	4	2.51545	125.5521	0.31659	0	0.3166	173.35	3.8628	-1E-04	8	0.7291	2.4103	2.2694	125.0155
6	56.4	2.31	-0.1	0.19	56.3988	4.0958	4		126.2326	0.37971				4.1236	-1E-04	9	0.75	2.1568	2.3158	114.1848
7	36.6	2.06	-0.16	0.27		5.6287	3		124.3398	0.44188				5.6975	-3E-04					71.36317
8	54.7	2.22	-0.23	0.27	54.6972		4		125.8671	0.50481				4.0965	-3E-04	4				91.12055
9	15.3	0.76	-5.24	0.21			3		114.9063	0.56226				5.1794	-0.026	3	0.9551			25.36648
10	18.7	0.95	-4.97	0.28	18.6392		3		117.0308	0.62078		0.6208			-0.02	3	0.947			28.21701
11	14.9	0.84	-4.77	0.34	14.8416		3		115.5747	0.67857				5.9309	-0.024	3				20.86441
12 13	8.4 9.9	0.37 0.33	-3.66 -3.53	0.41 0.44	8.3552 9.85679	4.4284	3		108.1741	0.73265		0.7327		4.854 3.6383	-0.035 -0.028	3				10.40405
13 14	9.9 9.4	0.33	-3.53	0.44	9.35912		3		107.7401 106.4115	0.83973	0			3.2866	-0.028	3				11.53212 10.14542
14	9.4 10.4	0.28	-3.34	0.44	10.3619		3		107.4045	0.89343		0.8934			-0.028	3				10.14542
15	15.8	0.31	-2.96	0.44	15.7638		3		111.627	0.94924				3.2401	-0.024	3				15.58066
10	6.4	0.10	-2.86	0.44	6.36499		3		104.0319	1.00126		1.0013		4.2881	-0.038	3		1.0568		5.35699
18	34.9	1.15	-2.58	0.48	34.8684		4		119.9563	1.06124				3.4016	-0.005	4				31.86544
19	88	2.62	0.53	0.53	88.0065		5		128.2393	1.12536				3.0156		5				78.22601
20	88.5	2.77	0.76	0.56	88.5093		5		128.6605	1.18969				3.1723						75.13678
21	30.3	0.77	1.56	0.6	30.3191	2.5397	4	2.58676	116.6803	1.24803	0	1.248	23.294	2.6487	0.0039	4	0.9241	0.8585	2.6643	23.58733
22	33.4	1.02	1.61	0.7	33.4197	3.0521	4	2.6055	118.9751	1.30752	0	1.3075	24.56	3.1764	0.0036	4	0.9389	0.8198	2.6958	24.87927
23	30.4	0.71	1.72	0.74	30.4211	2.3339	4	2.56273	116.0949	1.36556	0	1.3656	21.277	2.4436	0.0043	4	0.9328	0.7882	2.6725	21.64495
24	48.6	2.05	1.56	0.79	48.6191	4.2165	4	2.58296	124.9969	1.42806	0	1.4281	33.046	4.3441	0.0024	4	0.9419	0.754	2.6885	33.62635
25	161.8	4.08	1.34	0.79	161.816	2.5214	5	2.06936	132.9656	1.49454	0	1.4945	107.27	2.5449	0.0006	5	0.7385	0.7749	2.1456	117.4115
26	61.7	3.21	1.94	0.87	61.7238		4		128.8601	1.55897	0			5.3354		3	0.9539			39.28896
27	74.5	3.44	2.2	0.93			4		129.8262					4.7186		4				46.39352
28	98.3	4.22	2.1	1	98.3257		9		131.9974	1.68989					0.0016	4	0.8877			60.27308
29	193.9	5.21	1.91	1.12			5		135.196	1.75748				2.7112		5	0.7528			123.9564
30	119.3	5.94	2.52	1.24			9		134.9712		0			5.0551		4				68.0309
31	236.2	8.66	2.08	1.33	236.225	3.666	8	2.10723	137.28	1.89361				3.6956	0.0006	8				140.0807
32 33	173 357.6	6.68 11.78	2.43 2.48	1.43		3.8606	8	2.20058	136.7365		0			3.9049	0.001	4	0.8353		2.3427	96.5239 207.267
				1.6		3.2939	8		137.28	2.03062	0			3.3127				0.6167		
34 35	198.9 303.2	6.35 7.52	2.39 2.08	1.62 1.66	198.929 303.225	2.48	8	2.0982 1.90582	136.706 137.28		Ű			3.2261 2.4979		5				107.0615 168.5859
35	303.2	12.92	1.81	1.74	382.422		8	1.90382	137.28	2.23625				3.3983	0.0003	8				204.0468
37	412.1	12.92	2.3	1.85	412.128	2.606	8	1.8574	137.28					2.6206		8				221.7992
38	293.5	7.81	1.43	1.99	293.518		8	1.93923	137.28					2.6825		5	0.7616			148.7139
39	308.6	8.43	1.13	2.2			8	1.93751	137.28					2.7534		5				152.5091
40	305.5	7.12	1.11	2.33	305.514		8	1.88125	137.28					2.3498		5				149.7362
41	103.9	5.42	3.1	2.39	103.938		9	2.43651	133.964		0			5.3473		3				39.32052
42	136	5.97	1.55	2.49	136.019	4.3891	9	2.30664	135.3273	2.64546	0	2.6455	50.416	4.4762	0.0008	4	0.951	0.4183	2.5604	52.73192
43	150.7	4.23	2.66	2.59	150.733	2.8063	5	2.12494	133.0568	2.71198	0	2.712	54.58	2.8577	0.0013	5	0.8839	0.4352	2.377	60.88124
44	109.8	4.8	1.63	2.74	109.82	4.3708	9	2.36122	133.2094	2.77859	0	2.7786	38.524	4.4843	0.0011	4	0.9932	0.3833	2.6539	38.77773
45	132.2	4.88	1.48	2.78	132.218	3.6909	8	2.2538	133.783	2.84548	0	2.8455	45.466	3.7721	0.0008	4	0.9517	0.3901	2.5372	47.69038
46	56.6	3	2.79	2.84	56.6342	5.2972	4	2.60997	128.1552	2.90956	0	2.9096	18.465	5.584	0.0037	3	1	0.3637	2.9538	18.46486
47	71.6	2.66	2.86	2.84		3.7133	4		127.8481	2.97348		2.9735			0.003	4				23.09128
48	331.5	5.94	2.35	2.95	331.529		6	1.76613	137.28					1.8083						140.7038
49	137.6	7.3	2.26	2.98	137.628		9		136.8276	3.11054				5.4268	0.0012	3				43.24564
50	104.4	4.35	3.95	3.08	104.448	4.1647	9	2.3583	132.3668	3.17672	0	3.1767	31.879	4.2954	0.0028	4	1	0.3331	2.702	31.87931

	CPT-6	In situ	data								Basic	output	data							
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo (tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn
1	16.5	0.69	-0.57	-0.01	16.493	4.1836	3	2.92866	114.3926	0.0572	0	• •	287.36	4.1982	-0.003	9	0.727	8.3417	2.289	129.5741
2	29.6	1.02	-0.19	-0.05	29.5977	3.4462	4	2.6799	118.6788	0.11654	0	0.1165	252.98	3.4598	-5E-04	8	0.7018	4.7028	2.219	131.0298
3	19.6	1.08	-0.1	-0.02	19.5988	5.5106	3	2.94897	118.0916	0.17558	0	0.1756	110.62	5.5604	-4E-04	9	0.8153	4.325	2.5154	79.39165
4	19.6	0.99	-0.1	-0.06			3		117.455	0.23431				5.1125	-4E-04	4	0.8307			64.02378
5	20.2	1.21	0.1	-0.08	20.2012		3		118.9971	0.29381				6.0781		3				57.19791
6	14.1	0.77	0.32	0.04	14.1039		3		114.8136	0.35121				5.5989	0.0017	3				35.59797
7 8	26.2	0.75	0.81	-0.02	26.2099		4		116.1325	0.40928				2.9069		5				51.90927
8	6.2 12.4	0.33	1.5 2.87	-	6.21836 12.4351		3		106.6166	0.46259				5.7334 4.2797		3				12.44252 22.16209
9 10	9.2	0.51 0.32	2.67	0.04	9.23158		3		107.3551	0.57201	0			3.6953		3	0.9460			15.00116
10	5.9	0.52	2.30		5.93513		3		101.6495	0.62284	-			3.2001		3		1.6989		8.52918
12	14.3	0.65	3.15	0.00	14.3386		3		113.6143	0.67964				4.7588		-				19.92546
13	14.9	0.63	3.25	0.04	14.9398		3		113.4858	0.73639	0			4.4356		3				19.15295
14	10.4	0.38	3.34	0.12			3		108.9128	0.79084				3.9378		3				12.20221
15	9.2	0.38	3.44	0.1	9.24211	4.1116	3	3.12382	108.6153	0.84515	0	0.8452	9.9354	4.5255	0.0295	3	1	1.252	3.1037	9.93544
16	8.9	0.37	3.97	0.15	8.94859	4.1347	3	3.1366	108.3415	0.89932	0	0.8993	8.9504	4.5967	0.0355	3	1	1.1766	3.144	8.95038
17	13.8	0.6	4.3	0.23	13.8526	4.3313	3	2.99727	112.9445	0.95579	0	0.9558	13.493	4.6523	0.024	3	1	1.1071	3.0064	13.49332
18	15.1	0.56	3.82	0.19	15.1468	3.6972	3	2.92439	112.6575	1.01212	0	1.0121	13.965	3.9619	0.0195	3	1	1.0454	2.9513	13.96533
19	91.9	1.48	4.18	0.53	91.9512		5		124.1673	1.07421	0			1.6286		5				84.98053
20	203.9	4.07	4.61	0.97	203.956		6		133.5122		0			2.0068		6				182.5861
21	250.5	6.68	4.59	1.25	250.556		8	1.97719	137.28	1.2096		1.2096			0.0013	8		0.9143	2.002	215.447
22	169	5.26	4.68	1.5	169.057		8		134.9312			1.2771			0.002					138.0232
23	40.3	0.74	5.42	1.61	40.3663		5		117.0876	1.33561		1.3356			0.01	5	0.8623			30.17551
24 25	116.7 107.6	3.9 4.73	5.97 5.56	1.34	116.773 107.668		5		131.8398 133.0536	1.40153 1.46806		1.4015		3.3804 4.4539		5	0.8018	0.7982		87.03348 75.87415
25	107.0	5.33	5.07	1.18	197.062		5		135.4018	1.53576		1.5358			0.0038	5	0.7296			140.808
20	275.6	9.23	4.97	1.10			8	2.03854	137.28	1.6044				3.3679	0.0013	8				191.0507
28	196.8	8.71	4.97	1.29	196.861		9	2.21863	137.28	1.67304	0			4.4624		9				127.1901
29	229.1	7.02	5.41	1.27	229,166		8	2.04888	137.28	1.74168	0			3.0867	0.0017	5				147.8578
30	402.6	13.61	5.35	1.29	402.665	3.38	8	1.96216	137.28	1.81032	0	1.8103	221.43	3.3952	0.001	8	0.7151	0.6811	2.0459	258.042
31	374.6	12.24	5.64	1.43	374.669	3.2669	8	1.96348	137.28	1.87896	0	1.879	198.4	3.2834	0.0011	8	0.7226	0.6604	2.0572	232.6612
32	216.7	9.44	5.83	1.51	216.771	4.3548	8	2.19042	137.28	1.9476	0	1.9476	110.3	4.3943	0.002	9	0.8262	0.6041	2.3192	122.638
33	154.5	8.57	5.64	1.64	154.569	5.5445	9	2.35814	137.28	2.01624	0	2.0162	75.662	5.6177	0.0027	9	0.904	0.5583	2.5152	80.496
34	315.6	11.41	5.82	1.85	315.671	3.6145	8	2.03766	137.28	2.08488				3.6386	0.0013	8				175.5314
35	367.5	11.58	5.35	2.14	367.565		8	1.95351	137.28	2.15352		2.1535			0.0011	8				203.7151
36	394.9	11.74	5.45	2.32	394.967		8	1.9165	137.28	2.22216	0			2.9892	0.001	8				215.4953
37	150.3	8.46	4.3	2.51	150.353		9	2.37013	137.28	2.2908				5.7138	0.0021	9	0.9369			67.86197
38	414.8	12.18	4.98	2.7	414.861		8	1.90183	137.28					2.9527		8				215.7954
39 40	290.3 363.5	6.63 8.86	4.2 5.16	2.93 3.01	290.351 363.563		6 8	1.88578 1.85856	137.28 137.28	2.42808 2.49672		2.4281		2.3027	0.0011 0.001	5				146.4119 181.4496
40 41	303.5	8.80 5.84	5.16 4.3	3.01	303.503		8	1.76853	137.28	2.49672	0				0.001	5				163.4496
41	352.8	8.1	3.58	3.09	352.844		8	1.84281	137.28	2.56556	0			2.3129	0.001	5				168.2122
43	279.7	8.42	3.63	3.36	279.744		8	1.99572	137.28		-				0.0007	-				122.0705
44	285.6	7.6	3.53	3.6	285.643		8	1.94548	137.28					2.6867	0.0009	5	0.7998			123.7693
45	227.6	5.62	2.96	3.81	227.636		5		136.1412		0			2.5	0.001	5	0.8239			94.19899
46	323.3	7.14	2.96	3.97	323.336		6	1.8483	137.28	2.90799	0			2.2283		5	0.7703			138.9914
47	330.1	8.07	2.58	4.21	330.132	2.4445	8	1.8811	137.28	2.97663	0	2.9766	109.91	2.4667	0.0006	5	0.7881	0.4426	2.0924	136.841
48	357.5	9.53	2.77	4.26	357.534	2.6655	8	1.89591	137.28	3.04527	0	3.0453	116.41	2.6884	0.0006	5	0.7969	0.4307	2.1069	144.2903
49	527	6.09	3.19	4.4	527.039	1.1555	6	1.49752	137.28	3.11391	0	3.1139	168.25	1.1624	0.0004	6	0.6356	0.5035	1.6745	249.3257
50	436.5	0	5.73	4.48	436.57	0	0	0	120.9	3.17436	0	3.1744	136.53	0	0.001	0	1	0.3333	0	0

	CPT-7	In situ	data								Basic	output	data							
Depth	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn
(ft) 1	334.6	1.45	-0.38	-1.38	334.595		7		127.1678	0.06358		(tsf) 0.0636	-	0.4334	-8E-05	7	0.2642	2.1022	1.074	664.634
2	17.6	1.15	-0.24		17.5971		3		118.2884	0.12273				6.5811		9				95.69897
3	19.5	0.74	-0.57	-1.11	19.493	3.7962	3	2.84573	115.3121	0.18038	0	0.1804	107.06	3.8317	-0.002	4	0.7779	3.9602	2.4182	72.28144
4	26.7	1.05	-0.48	-1.08	26.6941	3.9335	4	2.75145	118.6391	0.2397	0	0.2397	110.36	3.9691	-0.001	4	0.7761	3.1656	2.4036	79.14437
5	31.1	1.16	-2.49	-1.06	31.0695	3.7336	4	2.6871	119.7383	0.29957	0	0.2996	102.71	3.7699	-0.006	4	0.7754	2.6602	2.3933	77.35883
6	21.8	1.09	-2.69	-1.06	21.7671	5.0076	3	2.88729	118.415	0.35878	0	0.3588	59.67	5.0915	-0.009	4	0.8609	2.5372	2.6094	51.33335
7	31.6	1.35	-2.41	-1.1	31.5705		4		120.8872	0.41922		0.4192			-0.006	4				62.97663
8	103.3	1.77	-2.48	-1.1	103.27	1.714	5		125.7597	0.4821		0.4821			-0.002	6	0.6098	1.615		156.8824
9	18.6	0.58	-1.91	-1.08	18.5766		4		113.4121	0.53881				3.2155	-0.008	4				30.80725
10	23.8	0.81	-1.82	-1.14	23.7777		4		116.4581	0.59704	0			3.4943	-0.006	4				36.04633
11	24.3	1.06	-1.96	-1.18		4.3665	3		118.4769	0.65628		0.6563		4.4878	-0.006	4	0.9066			
12	25.8	0.93	-1.62	-1.14	25.7802		4		117.6661	0.71511				3.7103	-0.005					33.58127
13 14	45.4 67.6	2.47	-1.48	-1.17 -1.1	45.3819		3		126.1926 125.5461	0.77821	0			5.5377 2.9665	-0.002 -0.001	4		1.3118 1.1949		55.29602 75.3753
14	67.6 85.7	1.98 0.79	-1.05 -0.76	-1.17	67.5872 85.6907		5		125.5461	0.84098	0	0.841		0.9317	-0.001	5				75.3753 88.67447
15	54	2.76	-0.22	-1.29	53.9973		4		127.4288	0.90008				5.2043	-3E-04	4				54.41249
10	100.8	2.70	0.39	-0.99	100.805		5		127.7121	1.02825				2.3352		,	0.7274			96.28104
18	49.1	1.56	0.59	-0.59		3.1767	4		123.0226	1.02025				3.2488	0.0009	4	0.8598			44.24457
19	54.5	2.96	0.71	-0.33	54.5087		4		127.9637	1.15374				5.5478	0.001	3		0.9235		46.566
20	40.2	1.46	1.15	-0.37	40.2141		4		122.0506	1.21477				3.7437		4				32.46448
21	37.2	0.98	1.25	-0.37	37.2153		4		118.9447	1.27424				2.7267	0.0025	4		0.8455		28.7192
22	42.8	1.2	1.43	-0.39	42.8175	2.8026	4	2.50024	120.7686	1.33463	0	1.3346	31.082	2.8928	0.0025	4	0.8991	0.8116	2.5879	31.81848
23	38.9	1.09	1.49	-0.31	38.9182	2.8007	4	2.5311	119.8322	1.39454	0	1.3945	26.908	2.9048	0.0029	4	0.9209	0.7755	2.6375	27.50177
24	64.6	3	1.79	-0.26	64.6219	4.6424	4	2.52906	128.477	1.45878	0	1.4588	43.299	4.7496	0.002	4	0.9212	0.7439	2.6304	44.40796
25	58.9	2.66	2.2	-0.15	58.9269	4.5141	4	2.54694	127.3718	1.52247	0	1.5225	37.705	4.6338	0.0028	4	0.9376	0.711	2.6656	38.57029
26	74.3	3.84	2.29	-0.12	74.328	5.1663	9	2.52439	130.6246	1.58778	0	1.5878	45.813	5.2791	0.0023	4	0.9335	0.6847	2.6465	47.06655
27	122.7	5.11	2.1	0.03	122.726	4.1638	9	2.31504	133.9383	1.65475	0	1.6548	73.166	4.2207	0.0013	4	0.8534	0.6828	2.4276	78.12211
28	271.8	6.28	2.34	0.22	271.829	2.3103	6	1.9058	137.28		0	1.7234			0.0006	5				182.1798
29	320.8	6.93	2.77	0.33	320.834	2.16	6	1.842	137.28		0			2.1721		6				211.746
30	197.5	5.3	2.39	0.4	197.529		5		135.3662					2.7087						120.4272
31	247.6	4.89	2.87	0.4	247.635		6		135.3285	1.92738				1.9902		6				152.6577
32	294.1	6.2	2.77	0.42	294.134		6	1.85367	137.28		0			2.1223		6				177.6081
33	355.9	7.07	2.28	0.54	355.928		6	1.78719	137.28	2.06466		2.0647			0.0005	6				213.4218
34 35	356.6 368.6	7.54 8.09	2.39 2.48	0.62 0.73	356.629	2.1142	6 8	1.80982 1.81629	137.28 137.28	2.1333 2.20194		2.1333		2.127	0.0005	6	0.6865			207.0327 208.2298
35	350.3	5.88	2.40	0.73	350.328		6	1.72926	137.28	2.20194				1.6894		6				197.5679
37	80	2.78	1.86	0.81	80.0228		5		128.4411	2.3348				3.5784		4				34.3286
38	55.6	1.4	2.47	0.99	55.6302		5	2.3847	122.535					2.6299		4				22.51278
39	49.6	1.51	2.77	1.14	49.6339		4		122.8103	2.45747				3.2008		4				19.19717
40	96	5.32	3.11	1.2	96.0381		9		133.6349			2.5243				3				37.04563
41	103.5	5.09	3.38	1.14	103.541		9	2.41721	133.495	2.59103	0	2.591	38.961	5.0421		4				39.07377
42	59.1	2.97	3.72	1.06	59.1455	5.0215	4	2.58011	128.1875	2.65513	0	2.6551	21.276	5.2575	0.0047	3	1	0.3985	2.8906	21.27597
43	46.5	1.67	4.21	1.02	46.5515	3.5874	4	2.54682	123.3908	2.71682	0	2.7168	16.135	3.8098	0.0069	3	1	0.3895	2.8915	16.13455
44	66.5	2.06	4.78	1	66.5585	3.095	5	2.39159	125.7985	2.77972	0	2.7797	22.944	3.2299	0.0054	4	1	0.3807	2.7275	22.9443
45	58	1.71	5.54	0.98	58.0678	2.9448	5	2.41824	124.1031	2.84177	0	2.8418	19.434	3.0964	0.0072	4	1	0.3723	2.7723	19.43365
46	75	3.3	6.07	1.05	75.0743	4.3957	4	2.46823	129.54	2.90654	0	2.9065	24.829	4.5727	0.0061	3	1	0.364	2.8001	24.82941
47	69.7	4.33	6.68	1.08	69.7818	6.2051	9		131.3494					6.4811		3	1	0.356	2.9351	22.47801
48	61	2.54	7.16	1.1		4.158	4		127.1219	3.03578				4.3754	0.0089	3			2.8728	19.12256
49	209.1	6.79	6.75	1.2	209.183	3.246	8	2.09185	137.28					3.2949	0.0024	5	0.8968			74.18209
50	169.9	0	7.35	1.29	169.99	0	0	0	120.9	3.16487	0	3.1649	52.712	0	0.0032	0	1	0.3343	0	0

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_w \cdot \left(0.27 \cdot \log(R_f) + 0.36 \cdot \log(\frac{q_t}{p_a}) + 1.236 \right)$$

where g_w = water unit weight

:: Permeability, k (m/s) ::

 $I_c < 3.27$ and $I_c > 1.00$ then $k = 10^{0.952\text{--}3.04\text{-}I_c}$

 $I_{\rm c} \leq 4.00$ and $I_{\rm c} > 3.27$ then $k = 10^{-4.52 \cdot 1.37 \cdot I_{\rm c}}$

:: N_{SPT} (blows per 30 cm) ::

$$\begin{split} N_{60} = & \left(\frac{q_c}{P_a} \right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \\ N_{1(60)} = & Q_{tn} \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}} \end{split}$$

:: Young's Modulus, Es (MPa) ::

 $\begin{aligned} (q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68} \\ (\text{applicable only to } I_c < I_{c_cutoff}) \end{aligned}$

:: Relative Density, Dr (%) ::

 $100 \cdot \sqrt{\frac{Q_{tn}}{k_{DR}}}$

(applicable only to SBT_n: 5, 6, 7 and 8 or $I_c\,<\,I_{c_cutoff})$

:: State Parameter, ψ ::

 $\psi = 0.56 - 0.33 \cdot \log(Q_{tn,cs})$

:: Peak drained friction angle, ϕ (°) ::

$$\label{eq:phi} \begin{split} \phi = & 17.60 + 11 \cdot \text{log}(\text{Q}_{tn}) \\ (\text{applicable only to SBT}_n\text{: 5, 6, 7 and 8}) \end{split}$$

:: 1-D constrained modulus, M (MPa) ::

$$\begin{split} & \text{If } I_c > 2.20 \\ & a = 14 \text{ for } Q_{tn} > 14 \\ & a = Q_{tn} \text{ for } Q_{tn} \leq 14 \\ & \text{M}_{\text{CPT}} = a \cdot (q_t - \sigma_v) \end{split}$$

If $I_c \le 2.20$ $M_{CPT} = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_s = \left(\frac{G_0}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

$$\begin{split} N_{kt} &= 10.50 + 7 \cdot \text{log}(F_r) \text{ or user defined} \\ S_u &= \frac{\left(q_t - \sigma_v\right)}{N_{kt}} \end{split}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9
or I_c > I_{c_cutoff})

:: Overconsolidation Ratio, OCR ::

$$k_{OCR} = \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot \log(F_r))}\right]^{1.25} \text{ or user defined}$$
$$OCR = k_{OCR} \cdot Q_{tn}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: In situ Stress Ratio, Ko ::

$$\mathsf{K}_{\mathsf{O}} = (1 - \sin \varphi') \cdot \mathsf{OCR}^{\sin \varphi'}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Soil Sensitivity, St ::

$$S_t = \frac{N_s}{F_r}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Effective Stress Friction Angle, ϕ (°) ::

 $\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \log Q_t)$ (applicable for $0.10 < B_q < 1.00$)

References

 Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5th Edition, November 2012

• Robertson, P.K., Interpretation of Cone Penetration Tests - a unified approach., Can. Geotech. J. 46(11): 1337-1355 (2009)

Appendix C

Laboratory Testing

MOISTURE CONTENT AND DENSITY

ASTM D2937

Job Name:		Carriage Cr	est Park Wa	ater Capture		Date Sam	pled:		9/30/2016
Job Number:		TET 16-101	E			Date Com	pleted:		10/19/2016
Tested By:		MG				Note:			Page 1 of 1
Boring / Test Pit / Trench		B-1	B-1	B-3	B-4	B-5	B-5	B-5	B-5
Sample Number		R-4	R-10	R-2	R-1	R-1	R-2	R-6	R-8
Sample Depth	feet	11-11.5	31-31.5	2-2.5	2-2.5	2-2.5	6-6.5	16-16.5	21-21.5
USCS Soil Description		Olive Brown Native (CH)	Olive Brown Native (SM)	Olive Brown Fill (SC)	Yellowish Brown Fill (ML)	Brown Fill (SM)	Dark Brown Fill (CL)	Olive Brown Native (CL)	Pale Olive Native (SM)
Number of Rings		6	6	6	6	6	6	6	6
Total Weight Rings + Soil	grams	1208.70	1140.50	1211.10	1187.60	1162.40	1184.80	1192.50	1040.70
* Volume of Rings	ft ³	0.0159	0.0159	0.0159	0.0159	0.0159	0.0159	0.0159	0.0159
* Weight of Rings	grams	267.54	267.54	267.54	267.54	267.54	267.54	267.54	267.54
* Weight of Soil	grams	941.16	872.96	943.56	920.06	894.86	917.26	924.96	773.16
* Wet Density	pcf	130.13	120.70	130.46	127.21	123.73	126.83	127.89	106.90
C	ontainer ID	P34	Z10	Z27	P20	P12	Z20	Z29	Z6
Tare	grams	9.2	4	4	8.8	9.3	4	4	4
Wet Soil + Tare	grams	306.9	285.9	292.1	285.3	304.4	289.1	255.9	258.3
Dry Soil + Tare	grams	258.6	227.8	253.9	260.8	280.9	250.2	211.3	238.1
* Weight of Water	grams	48.3	58.1	38.2	24.5	23.5	38.9	44.6	20.2
* Dry Density	pcf	109.0	95.8	113.2	115.9	113.9	109.5	105.2	98.4
* Moisture Content	%	19.4	26.0	15.3	9.7	8.7	15.8	21.5	8.6

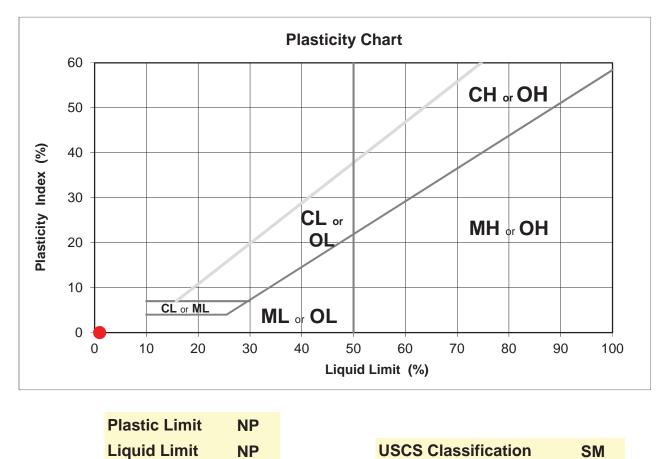
MOISTURE CONTENT AND DRY DENSITY OF TUBE SAMPLES

Client: Project Name: Project No.: Tetra Tech Carriage Crest Park Water Capture TET 16-101E HAI Project No.: TRT-16-017 Performed by: KL Checked by: MZ Date: 10/24/2016

Boring No.		B-3	B-4
Sample No.		R-5	R-6
Depth (ft)		11-11.5	16-16.5
Total wt of tube and soil	gr	775.66	725.14
Height of sample	in	5.07	5.04
Diameter of sample	in	2.4055	2.4065
Volume of sample	cu.ft	0.0133	0.0133
Weight of tube	gr	0.00	0.00
Weight of soil	lbs.	1.710	1.599
Wet Density	pcf	128.3	120.4
Container No.		42	35
Weight of cont.+ wet soil	gr	74.41	78.85
Weight of cont.+ dry soil	gr	62.71	66.53
Weight of container	gr	4.99	4.94
Weight of water	gr	11.70	12.32
Weight of dry soil	gr	57.72	61.59
Moisture Content	%	20.3	20.0
Dry Density	pcf	106.7	100.3

ASTM D4318

Job Name:	Carriage Crest Park Water Capture	Date Sampled:	9/30/2016
Job Number:	TET-16-101E	Date Completed:	10/30/2016
Tested By:	MG	Sample Identification:	B-5 , SPT-10
Note:		Sample Depth:	25-26.5ft
Sample Description:	Olive Brownish Gray Native (SM)		


Drive Brownish Gray Native (SM)

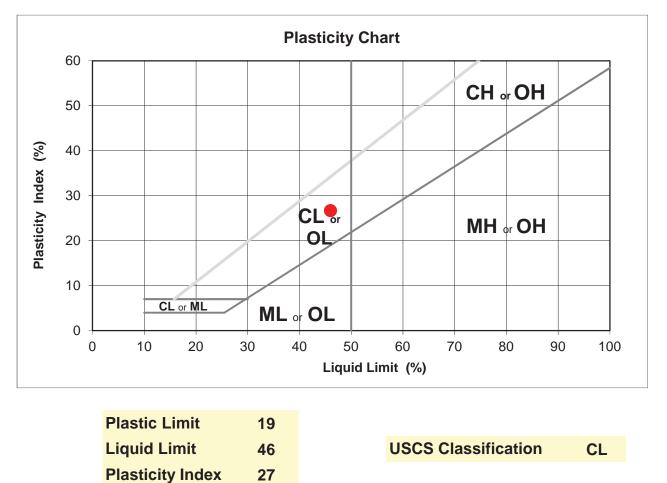
		PLAS	
Test No.		1	2
Number of Blows			
Container ID			
Wet Weight of Soil + Cont.	grams	NP	NP
Dry Weight of Soil + Cont.	grams		
Weight of Container	grams		
* Moisture Weight	grams	0.00	0.00
* Weight of Dry Soil	grams	0.00	0.00
* Moisture Content	%	NP	NP

Plasticity Inde

NP

	LIQUI	D LIMIT	
1	2	3	4
NP	NP	NP	
0.00	0.00	0.00	
0.00	0.00	0.00	
NP	NP	NP	

1360 Valley Vista Drive * Diamond Bar, CA 91765 * Tel: (909) 860-7777



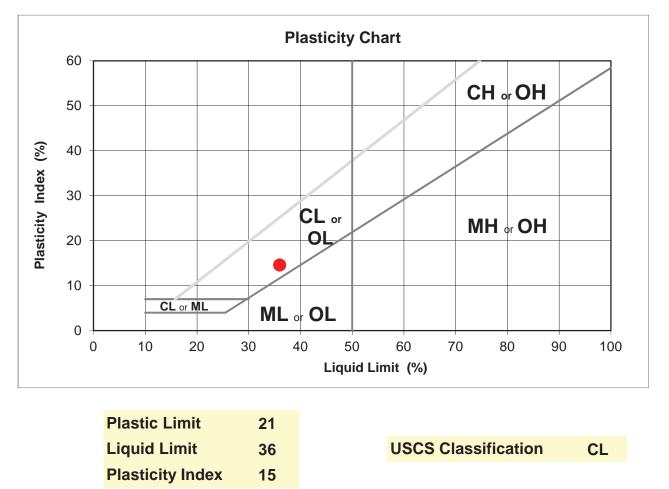
ASTM D4318

Job Name:	Carriage Crest Park water Capture	Date Sampled:	9/30/2016
Job Number:	TET-16-101E	Date Completed:	10/27/2016
Tested By:	MG	Sample Identification:	B-1, SPT-3
Note:		Sample Depth:	7.5-9 ft
Sample Description:	Dark Gray Native (CL)		

		PLASTIC LIMIT	
Test No.		1	2
Number of Blows			
Container ID		F7	F6
Wet Weight of Soil + Cont.	grams	24.20	24.70
Dry Weight of Soil + Cont.	grams	22.40	22.60
Weight of Container	grams	12.40	12.40
* Moisture Weight	grams	1.80	2.10
* Weight of Dry Soil	grams	10.00	10.20
* Moisture Content	%	18.0	20.6

LIQUID LIMIT				
1	2	3	4	
36	27	17		
N10	T18	T16		
46.60	47.90	47.20		
40.10	40.88	40.10		
25.50	25.60	25.30		
6.50	7.02	7.10		
14.60	15.28	14.80		
44.5	45.9	48.0		

ASTM D4318

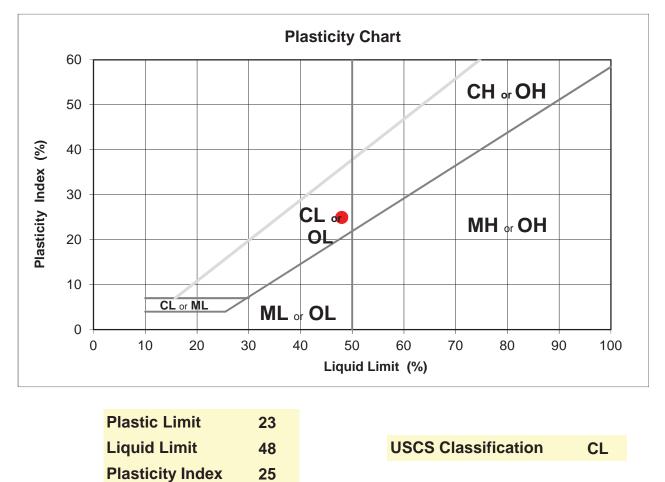

Job Name:	Carriage Crest Park water Capture	Date Sampled:
Job Number:	TET-16-101E	Date Completed:
Tested By:	MG	Sample Identification:
Note:		Sample Depth:
Sample Description:	Olive Brownish Gray Native (CL)	

		PLASTIC LIMIT	
Test No.		1	2
Number of Blows			
Container ID		P3	P5
Wet Weight of Soil + Cont.	grams	25.30	25.60
Dry Weight of Soil + Cont.	grams	23.00	23.30
Weight of Container	grams	12.40	12.40
* Moisture Weight	grams	2.30	2.30
* Weight of Dry Soil	grams	10.60	10.90
* Moisture Content	%	21.7	21.1

1	2	3	4	
15	26	35		
N11	M14	S19		
53.30	50.40	53.40		
45.80	43.80	46.30		
25.50	25.30	25.40		
7.50	6.60	7.10		
20.30	18.50	20.90		
36.9	35.7	34.0		

9/30/2016 10/27/2016

B-1, SPT-7 17.5-19 ft

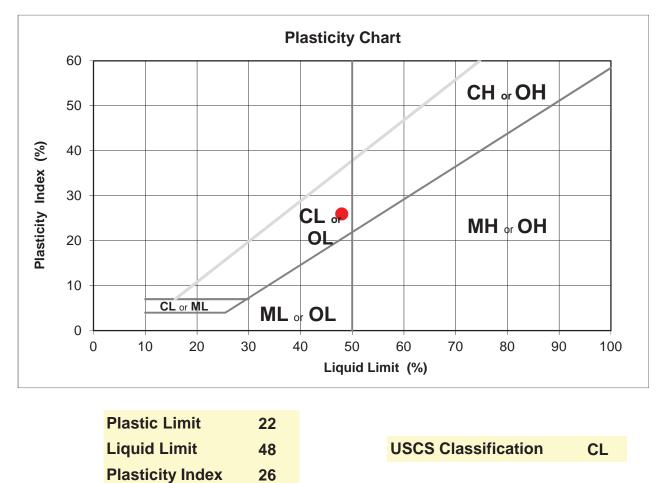


ASTM D4318

Job Name:	Carriage Crest Park water Capture	Date Sampled:	9/30/2016
Job Number:	TET-16-101E	Date Completed:	10/27/2016
Tested By:	MG	Sample Identification:	B-3, SPT-4
Note:		Sample Depth:	7.5-9 ft
Sample Description:	Light Brownish Gray Native (CL)		

		PLASTIC LIMIT	
Test No.		1	2
Number of Blows			
Container ID		F5	M1
Wet Weight of Soil + Cont.	grams	22.10	21.40
Dry Weight of Soil + Cont.	grams	20.30	19.70
Weight of Container	grams	12.40	12.40
* Moisture Weight	grams	1.80	1.70
* Weight of Dry Soil	grams	7.90	7.30
* Moisture Content	%	22.8	23.3

LIQUID LIMIT				
1	2	3	4	
36	24	15		
P36	P8	S1		
47.30	46.80	46.00		
40.60	39.70	39.00		
25.80	25.10	25.10		
6.70	7.10	7.00		
14.80	14.60	13.90		
45.3	48.6	50.4		

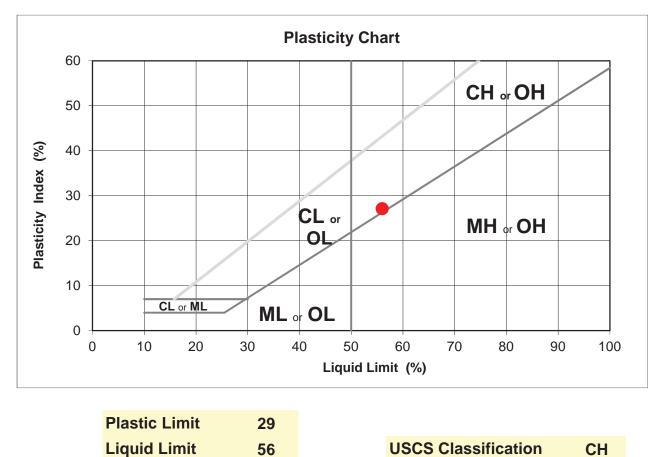


ASTM D4318

Job Name:	Carriage Crest Park water Capture	Date Sampled:	9/30/2016
Job Number:	TET-16-101E	Date Completed:	10/27/2016
Tested By:	MG	Sample Identification:	B-3, SPT-6
Note:		Sample Depth:	12.5-14 ft
Sample Description:	Dark Gray (CL)		

		PLASTIC LIMIT	
Test No.		1	2
Number of Blows			
Container ID		F8	А
Wet Weight of Soil + Cont.	grams	20.90	21.60
Dry Weight of Soil + Cont.	grams	19.40	19.90
Weight of Container	grams	12.40	12.40
* Moisture Weight	grams	1.50	1.70
* Weight of Dry Soil	grams	7.00	7.50
* Moisture Content	%	21.4	22.7

LIQUID LIMIT				
1	2	3	4	
34	27	17		
T38	MP39	N6		
47.30	46.80	46.00		
40.60	39.70	39.00		
25.80	25.10	25.10		
6.70	7.10	7.00		
14.80	14.60	13.90		
45.3	48.6	50.4		


ASTM D4318

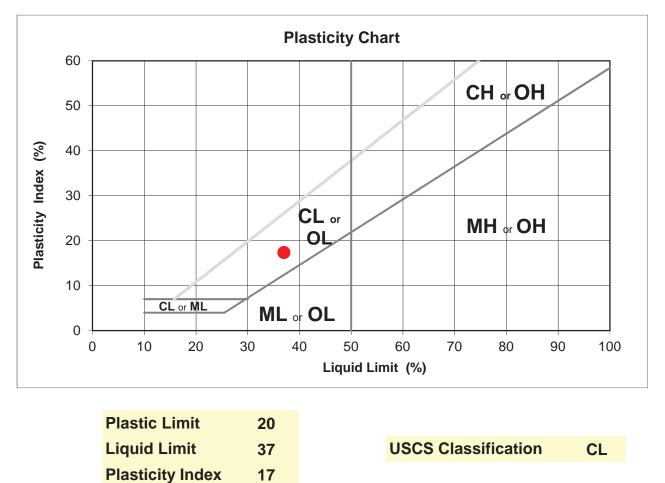
Job Name:	Carriage Crest Park water Capture	Date Sampled:	9/30/2016
Job Number:	TET-16-101E	Date Completed:	10/30/2016
Tested By:	MG	Sample Identification:	B-4, SPT-3
Note:		Sample Depth:	7.5-9 ft
Sample Description:	Dark Gray (CH)		

	PLASTIC LIMIT		TIC LIMIT
Test No.		1	2
Number of Blows			
Container ID		N4	P6
Wet Weight of Soil + Cont.	grams	24.00	24.00
Dry Weight of Soil + Cont.	grams	21.40	21.40
Weight of Container	grams	12.40	12.40
* Moisture Weight	grams	2.60	2.60
* Weight of Dry Soil	grams	9.00	9.00
* Moisture Content	%	28.9	28.9

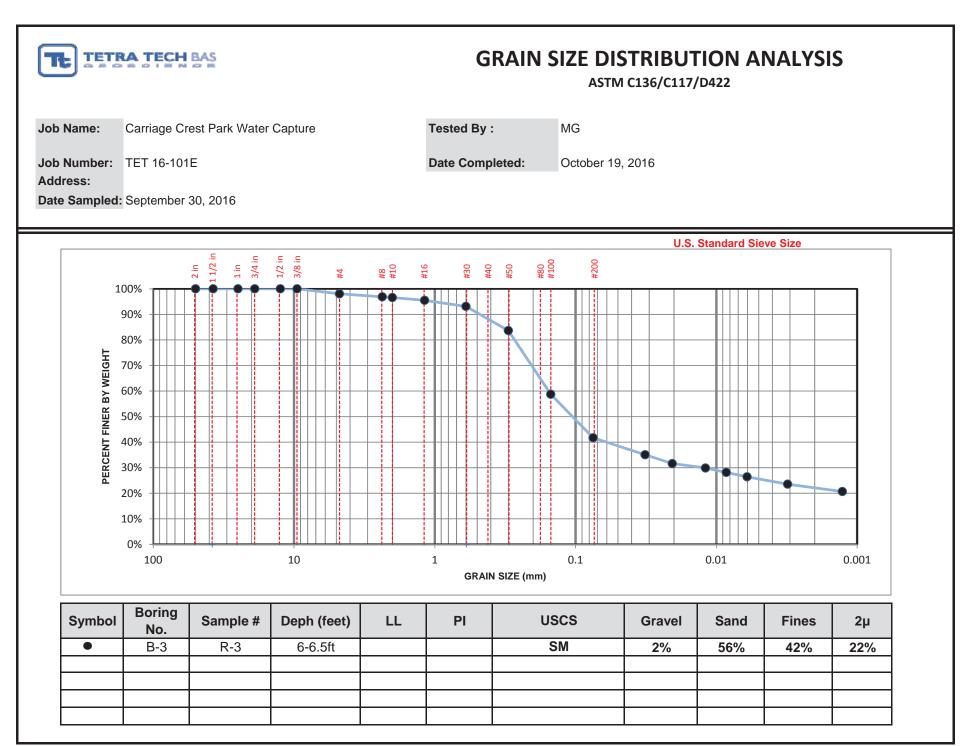
Plasticity Index

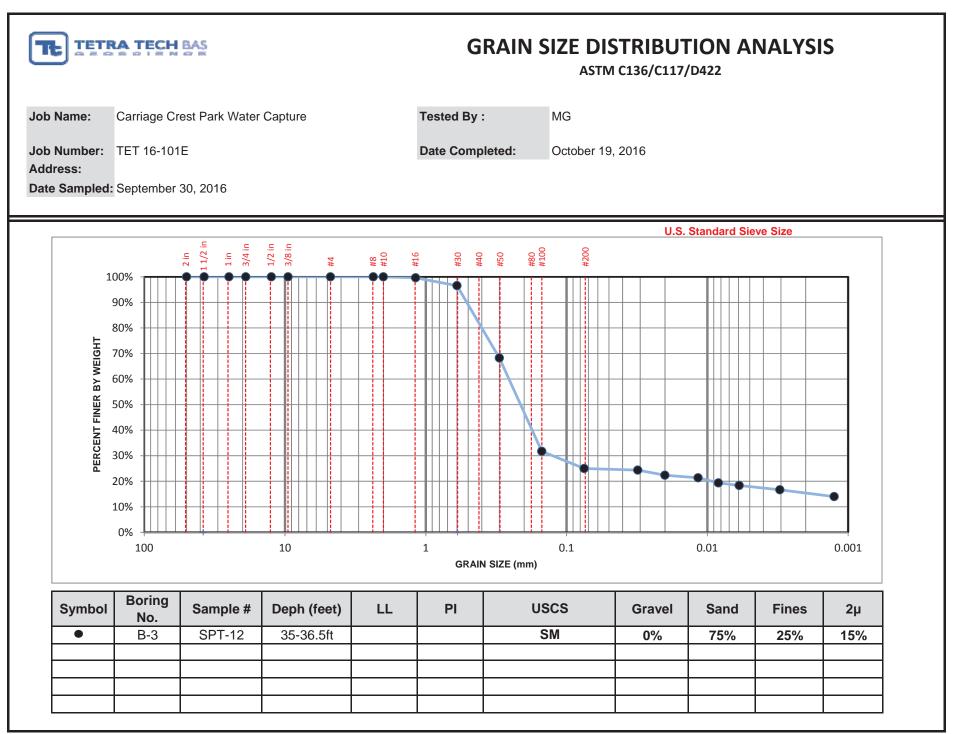
LIQUID LIMIT			
1	2	3	4
34	23	18	
T38	M14	N10	
48.60	49.20	44.30	
40.70	40.70	37.30	
25.70	25.40	25.50	
7.90	8.50	7.00	
15.00	15.30	11.80	
52.7	55.6	59.3	

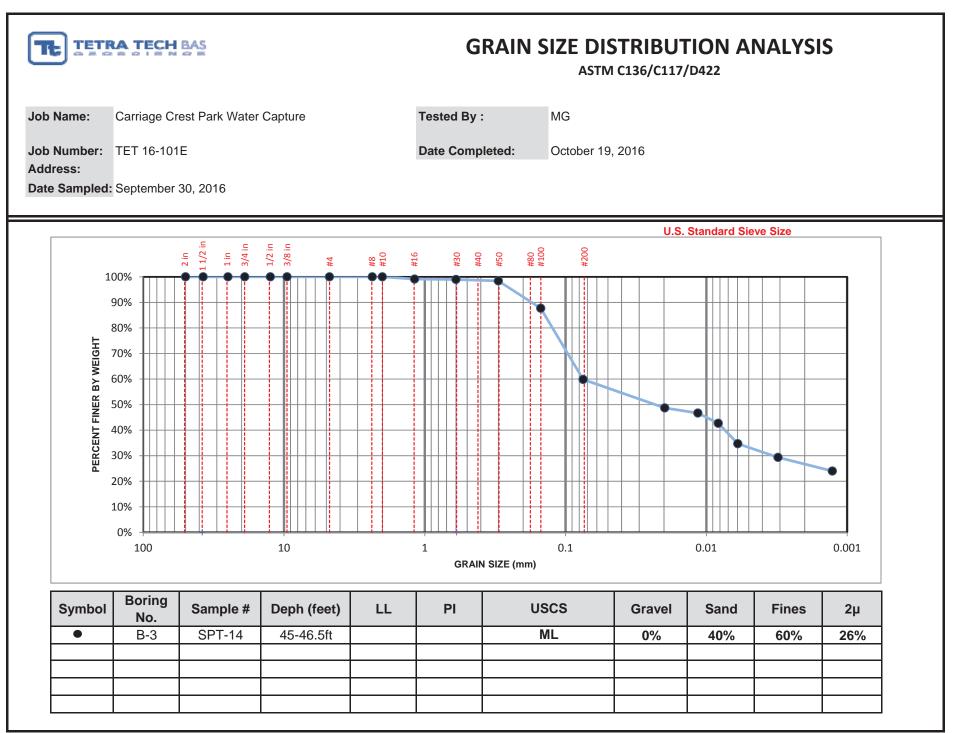
27

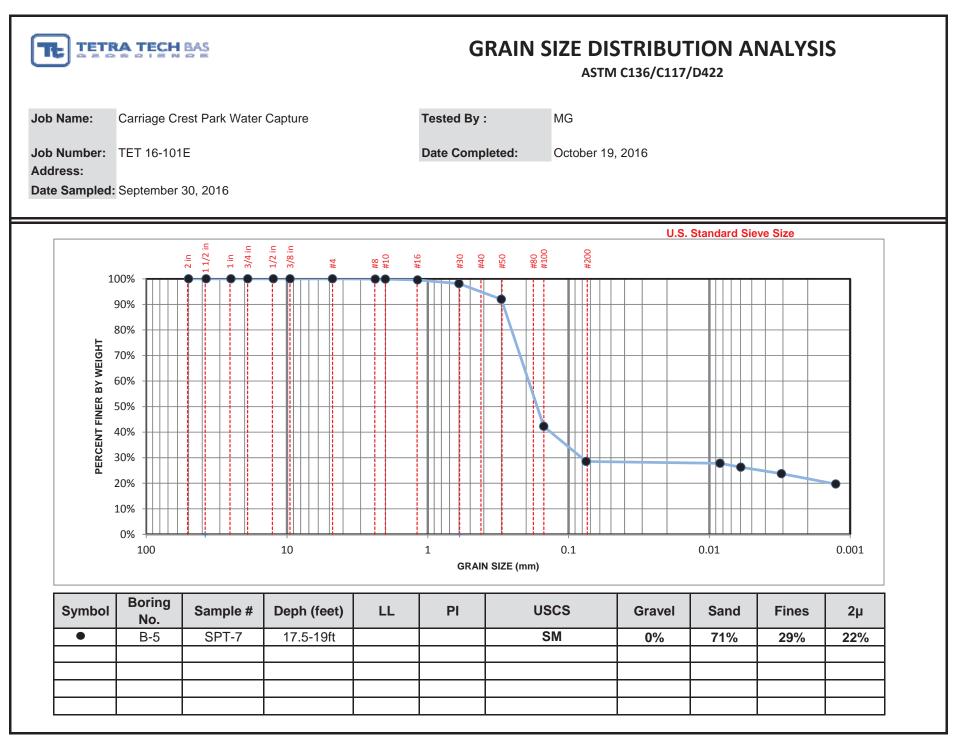


ASTM D4318


Job Name:	Carriage Crest Park water Capture	Date Sampled:	9/30/2016
Job Number:	TET-16-101E	Date Completed:	10/30/2016
Tested By:	MG	Sample Identification:	B-5, SPT-5
Note:		Sample Depth:	12.5-14 ft
Sample Description:	Pale Olive Native (CL)		1


		PLAS	TIC LIMIT
Test No.		1	2
Number of Blows			
Container ID		F5	А
Wet Weight of Soil + Cont.	grams	21.50	22.20
Dry Weight of Soil + Cont.	grams	20.00	20.60
Weight of Container	grams	12.40	12.40
* Moisture Weight	grams	1.50	1.60
* Weight of Dry Soil	grams	7.60	8.20
* Moisture Content	%	19.7	19.5


LIQUID LIMIT			
1	2	3	4
35	26	15	
M39	P8	T16	
48.80	46.80	45.50	
42.70	41.10	39.80	
25.10	25.70	25.30	
6.10	5.70	5.70	
17.60	15.40	14.50	
34.7	37.0	39.3	



Job Name: Job Number Address: Date Sample		Carriage Crest Par TET-16-101E September 30, 201		Tested By : Date Completed	J:	MG October 19,
	oring mber	Sample Number	Depth (ft)	Percent Passing # 200 Sieve	USCS Classification	
E	3-1	SPT-3	7.5-9	69	CL	
E	3-1	SPT-7	17.5-19	56	CL	
E	3-1	SPT-12	40-41.5	31	SM	-
E	3-3	SPT-15	50-51.5	10	SP-SM	-
E	3-5	SPT-5	12.5-14	51	ML	
E	3-5	SPT-9	25-26.5	42	SM	=

¹³⁶⁰ Valley Vista Drive * Diamond Bar, CA 91765 * Tel.: (909) 860-7777

Client:	Tetra 7	Tech
---------	---------	------

Project No.:

TET 16-101E B-3

Boring No.:

Sample No.: SK-1

Depth: 0-5'

EXPANSION INDEX (ASTM D4829)

HAI Project No.: TRT-16-017

Tested by: KL

Checked by: MZ

oth: 0-5'

Date: 10/24/2016

MOISTURE CONTENT AFTER TEST				
Wt. of wet soil + cont.			634.42	g
Wt. of dry soil + cont.			551.70	g
Wt. of container			201.99	g
Wt. of water			82.72	g
Wt. of dry soil			349.71	g
Moisture Content			23.7	%
Date & time	Elapsed time (min)	Dial Reading	Δ h, Expansion	
10/12/2016 13:38	0	0		
10/12/2016 13:48 10 -0.0008				
Add	Add distilled water to sample			
10/14/2016 13:38	2880	0.0543	0.05	551

Soil Description: Dark Brown, Clayey Sand (SC)

MOLDED SP	ECIMEN	
Wt. of wet soil + cont.	170.46	g
Wt. of dry soil + cont.	155.81	g
Wt. of container	12.08	g
Wt. of water	14.65	g
Wt. of dry soil	143.73	g
Moisture Content	10.2	%
Wt. of wet soil + ring	587.88	g
Wt. of ring	201.99	g
Wt. of wet soil	385.89	g
Wet density of soil	116.9	pcf
Dry density of soil	106.1	pcf
Specific gravity of soil	2.65	pcf
Saturation	48.4	%

Expansion Index =

55

Client: Tetra Tech

Project Name: Carriage Crest Park Water Capture	Project Name:	Carriage Crest Park Water Capture
--	---------------	-----------------------------------

Project No.: TET 16-101E

Boring No.:

Sample No.: SPT-10 Depth: 25-26.5'

Soil Description: Olive, Sandy Lean Clay (CL)

B-3

MOLDED SPECIMEN					
Wt. of wet soil + cont.	72.39	g			
Wt. of dry soil + cont.	66.88	g			
Wt. of container	11.04	g			
Wt. of water	5.51	g			
Wt. of dry soil	55.84	g			
Moisture Content	9.9	%			
Wt. of wet soil + ring	596.95	g			
Wt. of ring	206.94	g			
Wt. of wet soil	390.01	g			
Wet density of soil	118.2	pcf			
Dry density of soil	107.6	pcf			
Specific gravity of soil	2.65	pcf			
Saturation	48.7	%			

EXPANSION INDEX (ASTM D4829)

HAI Project No.: TRT-16-017

Tested by: KL

Checked by: MZ

Date: 10/24/2016

MOISTURE CONTENT AFTER TEST					
Wt. of wet soil +	649.64	g			
Wt. of dry soil +	cont.		557.64	g	
Wt. of container	206.94	g			
Wt. of water	92.00	g			
Wt. of dry soil	350.70	g			
Moisture Conte	26.2	%			
Date & time	Elapsed time (min)	Dial Reading	Δ h, Expansion		
10/12/2016 14:23	0	0			
10/12/2016 14:33	10	-0.0013			
Add distilled water to sample					
10/14/2016 14:23	2880	0.0695	0.0708		

Expansion Index =

71

Client: Tetra Tech

Project Name: Carriage Crest Park Water Capture

Project No.: T

TET 16-101E

Boring No.: B-4

Sample No.: SPT-5

-5 **Depth:** 12.5-14'

Soil Description: Dark Brown, Fat Clay (CH)

MOLDED SPECIMEN					
Wt. of wet soil + cont.	141.23	g			
Wt. of dry soil + cont.	126.37	g			
Wt. of container	11.60	g			
Wt. of water	14.86	g			
Wt. of dry soil	114.77	g			
Moisture Content	12.9	%			
Wt. of wet soil + ring	556.99	g			
Wt. of ring	190.87	g			
Wt. of wet soil	366.12	g			
Wet density of soil	110.9	pcf			
Dry density of soil	98.2	pcf			
Specific gravity of soil	2.65	pcf			
Saturation	50.2	%			

EXPANSION INDEX (ASTM D4829)

HAI Project No.: TRT-16-017

Tested by: KL

Checked by: MZ

Date: 10/24/2016

MOISTURE CONTENT AFTER TEST					
Wt. of wet soil +	656.56	g			
Wt. of dry soil +	cont.		511.65	g	
Wt. of container	190.87	g			
Wt. of water	144.91	g			
Wt. of dry soil	320.78	g			
Moisture Conte	45.2	%			
Date & time	Elapsed time (min)	Dial Reading	Δ h, Expansion		
10/12/2016 14:01	0	0			
10/12/2016 14:11	10	-0.0014			
Add distilled water to sample					
10/21/2016 14:01	12960	0.2793	0.2807		

Expansion Index =

281

Che

12.0-14

6.4

12.8

3.2

1.6

0.0235

0.0312

0.0274

0.0257

0.9790

0.9713

0.9751

0.9768

0.327

0.319

0.323

0.325

0.501

0.490

0.495

0.498

2.3

3.1

2.7

2.6

3.4E-03

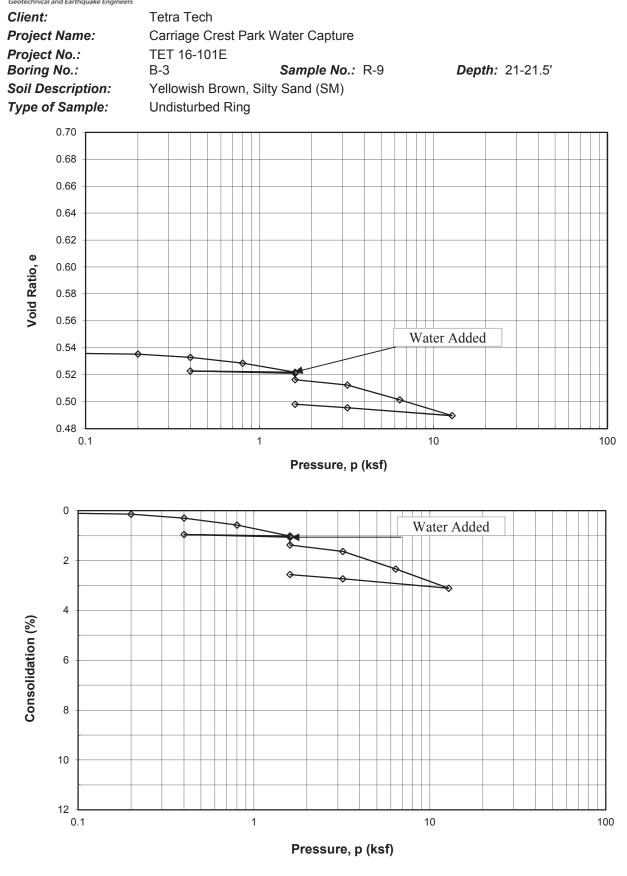
1.8E-03

UNLOAD

2.3E-03

1.2E-03

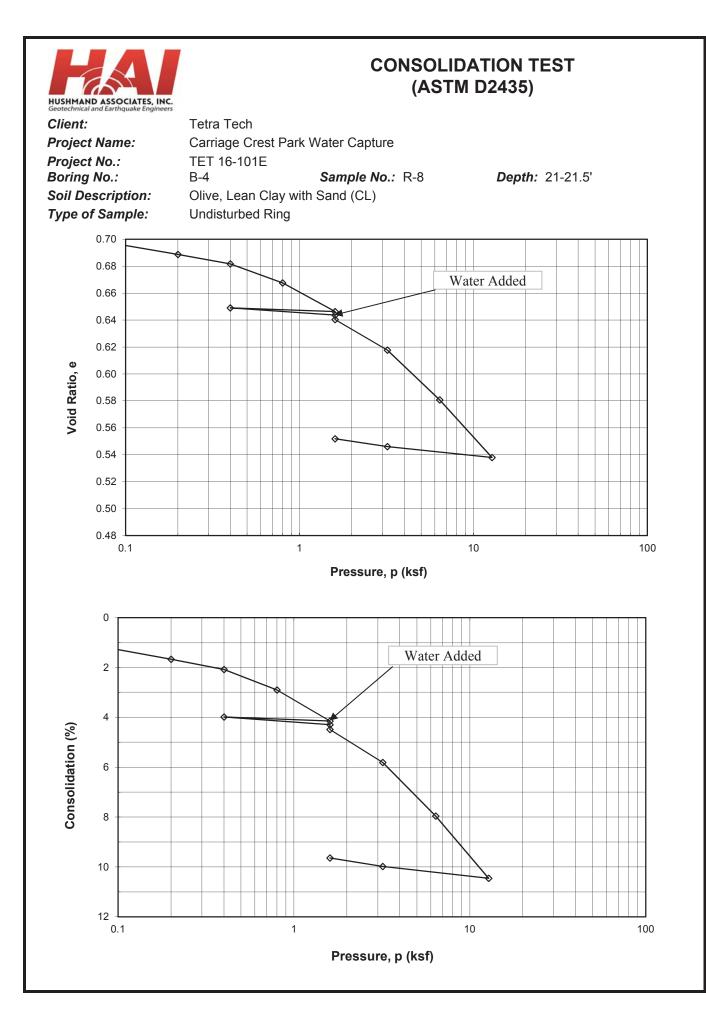
CONSOLIDATION TEST (ASTM D2435)


Geotechnical and Earthquake EngineersClient :Tetra TechProject Name:Carriage Crest Park Water CaptureProject No.:TET 16-101E

HAI Project No.:	TRT-16-017
Tested by:	KL
Checked by:	MZ
Dato	10/24/2016

				Date: 10/24/2016					
Boring No		B-3 Sample No.: R-9			Depth:	21-21.5'			
Soil Descr		Yellowish Brown, Silty Sand (SM)							
Type of Sa	Type of Sample: Undisturbed Ring								
					tal Weight		al Weight	-	Weight
					g)		g)	(0	
				147	7.32	150	0.71	127	.30
Initial Conditions Final					al Conditio	ons			
Height	·	Н	(in)		1.0025	·		0.9768	
Height of S		Hs	(in)		0.652			0.652	
Height of \		Hw	(in)		0.266	0.311			
Height of A		На	(in)	 	0.085		0.014		
Dry Densit			(pcf)	105.5		108.3			
Water Con Saturation			(%)	15.7		 	18.3 95.7		
Saturation	on (%)			L	75.8			90.1	
Load	δΗ	Н	Voids		Consol.	t ₅₀	a _v	Mv	
(ksf)	(in)	(in)	(in)	е	(%)	(sec)	(ksf) ⁻¹	(ksf)⁻¹	
0.01		1.0025	0.350	0.537	0		!		
0.2	0.0014	1.0011	0.349	0.535	0.1		1.1E-02	7.4E-03	
0.4	0.0030	0.9995	0.347	0.533	0.3		1.2E-02	8.0E-03	
0.8	0.0058	0.9967	0.345	0.529	0.6		1.1E-02	7.0E-03	
1.6	0.0102	0.9923	0.340	0.522	1.0		8.4E-03	5.5E-03	
0.4	0.0096	0.9929	0.341	0.523	1.0		UNLOAD		
1.0	0.0107	0.9918	0.340	0.521	1.1		1.4E-03	9.2E-04	
1.6	0.0107			<u> </u>		Water Added			
1.6 1.6	0.0138	0.9887	0.337	0.516	1.4	V	Vater Adde	d	

CONSOLIDATION TEST (ASTM D2435)



CONSOLIDATION TEST (ASTM D2435)

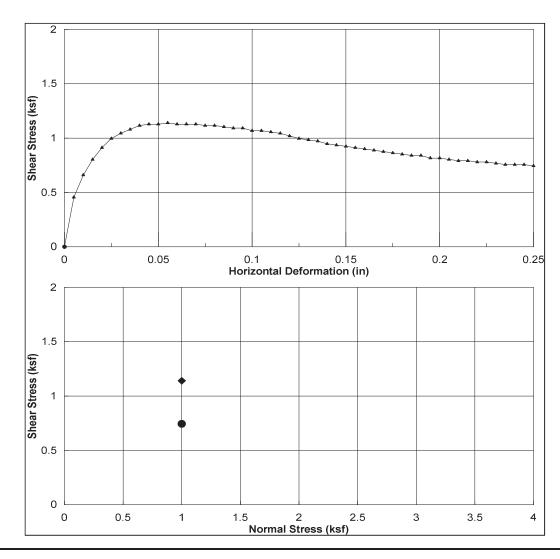
Geotechnical and Earthquake EngineersClient :Tetra TechProject Name:Carriage Crest Park Water CaptureProject No.:TET 16-101E

HAI Project No.: TRT-16-017 Tested by: KL Checked by: MZ Date: 10/24/2016

								10/24/2016	<u> </u>
Boring No		B-4		mple No.:	R-8	Depth:	21-21.5'		
Soil Desc		Olive, Lean		Sand (CL)					
Type of S	ample:	Undisturbed	Ring						
				Initial To	tal Weight	Final Tot	tal Weight	Final Dr	y Weight
			P		g)		g)	-	g)
				15(6.95		2.07		7.96
			<u> </u>	Init	tial Condition	ons	Fin	nal Conditio	ons
Height	0-lide	H Hs	(in)	 	0.9988		 	0.9025	
Height of Height of		Hs Hw	(in) (in)	 	0.582		 	0.582	
Height of		Ha	(in) (in)	I	0.031		<u> </u>	0.000	
Dry Densi			(pcf)		106.4		<u> </u>	117.8	
Water Co	ntent		(%)		22.7			18.8	
Saturation	n		(%)		92.5			100.0	
Load	δΗ	H	Voids		Consol.	t ₅₀	a _v	M _v	
(ksf)	(in)	(in)	(in)	е	(%)	(sec)	(ksf) ⁻¹	(ksf) ⁻¹	
0.01		0.9988	0.417	0.717	0				
0.2	0.0167	0.9821	0.401	0.689	1.7		1.5E-01	9.0E-02	
0.4	0.0208	0.9780	0.396	0.682	2.1		3.5E-02	2.1E-02	
0.8	0.0290	0.9698	0.388	0.668	2.9	[]	3.5E-02	2.1E-02	
1.6	0.0414	0.9574	0.376	0.646	4.1		2.7E-02	1.6E-02	
0.4	0.0398	0.9590	0.377	0.649	4.0		UNLOAD		
1.6	0.0429	0.9559	0.374	0.644	4.3		4.4E-03	2.7E-03	
1.6	0.0448	0.9540	0.372	0.640	4.5	v	Nater Adde	∋d	
3.2	0.0580	0.9408	0.359	0.618	5.8		1.4E-02	8.8E-03	
6.4	0.0795	0.9193	0.338	0.581	8.0		1.2E-02	7.3E-03	
12.8	0.1044	0.8944	0.313	0.538	10.5		6.7E-03	4.4E-03	
3.2	0.0997	0.8991	0.318	0.546	10.0		UNLOAD		
1.6	0.0963	0.9025	0.321	0.552	9.6				
			<u> </u>						
		,			,		1		

HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers				DIRE	ECT SHEA (ASTM D	_	ST			HAI	Pr No.:	TRT-16-(
<i>Client:</i> Tetra Tech <i>Project Name:</i> Carriage Crest Pa <i>Project Number:</i> TET 16-101E	rk Water C	Capture			(* *** *** *	,				Tes	sted by: cked by:	KL
Boring No.: B-3					_							
Sample No.: R-7					2							••••
<i>Depth (ft):</i> 16-16.5'				1.	.5							
Soil description: Brown, Lean Clay Sample type: Undisturbed Ring	with Sand	(CL)		sss (ksf)	1	××××××		******	***		****	* * * * *
<i>Type of test:</i> Consolidated, Dra				Shear					*****	- <u>+</u> +++++++	* * * * *	****
				0.	<u></u>							
		•	•	0.		0.05		D.1	0.15		0.2	
Normal Stress (ksf)	1	◆ 2	•	0.	0 0	0.05	Но	0.1 izontal Defor	0.15 mation (in)	1	0.2	I
Normal Stress (ksf) Deformation Rate (in/min)			-	0.	0	0.05	Hot	D.1 izontal Defor	0.15 mation (in)		0.2	- 1
		2	-	0.	0 0	0.05	Ho	0.1 izontal Defor	0.15 mation (in)		0.2	
		2	-	0.		0.05	Ho	0.1 izontal Defor	0.15 mation (in)		0.2	
Deformation Rate (in/min)	1	2	4	0.		0.05	Ho	0.1 izontal Defor	0.15 mation (in)		0.2	
Deformation Rate (in/min) Peak Shear Stress (ksf)	1	2 0.002 1.43	4	0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05	Ho	0.1 izontal Defor	0.15 mation (in)		0.2	
Deformation Rate (in/min) Peak Shear Stress (ksf)	1	2 0.002 1.43	4	0.		0.05	Ho	D.1 izontal Defor	0.15 mation (in)		0.2	
Deformation Rate (in/min) Peak Shear Stress (ksf) Shear stress @ end of test (ksf)	1 1.00 0.67	2 0.002 1.43 1.24	4	0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05	Ho	D.1 izontal Defor	0.15 mation (in)		0.2	
Deformation Rate (in/min) Peak Shear Stress (ksf) Shear stress @ end of test (ksf) Initial height of sample (in)	1 1.00 0.67	2 0.002 1.43 1.24	4 1.81 1.81 1	0. [0.05	Ho	D.1 izontal Defor	0.15 mation (in)		0.2	
Deformation Rate (in/min) Peak Shear Stress (ksf) Shear stress @ end of test (ksf) Initial height of sample (in) Height of sample before shear (in)	1 1.00 0.67 1 0.9967	2 0.002 1.43 1.24 1 0.9880	4 1.81 1.81 1 0.9642	.0 Shear Stress (ksf)		0.05	Hor	D.1 izontal Defor	0.15 mation (in)		0.2	
Deformation Rate (in/min) Peak Shear Stress (ksf) Shear stress @ end of test (ksf) Initial height of sample (in) Height of sample before shear (in) Diameter of sample (in)	1 1.00 0.67 1 0.9967 2.42	2 0.002 1.43 1.24 1 0.9880 2.42	4 1.81 1.81 1 0.9642 2.42	.0 Shear Stress (ksf)		0.05	Ho	D.1 izontal Defor	0.15 mation (in)		0.2	

HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

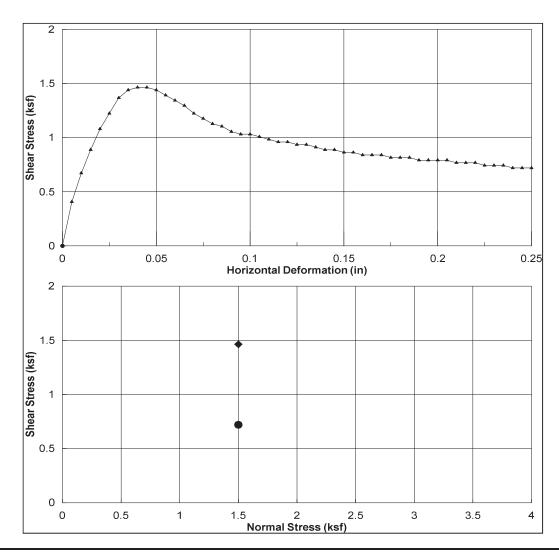

- ...

Client: Project Name: Project Number:	Tetra Tech Carriage Crest Pa TET 16-101E	ark Water Captu
Boring No.:	B-4	
Sample No.:	R-2	
Depth (ft):	6-6.5'	
Soil description: Sample type:	Brown, Sandy Le Undisturbed Ring	
Type of test:	Consolidated, Dra	ained
Normal Stress (kst		▲ 1 0.002
Normal Stress (kst Deformation Rate		1 0.002
	(in/min)	
Deformation Rate	(in/min)	0.002
Deformation Rate Peak Shear Stress Shear stress @ er	(in/min) s (ksf)	0.002
Deformation Rate Peak Shear Stress	(in/min) s (ksf)	0.002
Deformation Rate Peak Shear Stress Shear stress @ er Initial height of sar	(in/min) s (ksf)	0.002 1.14 0.74 1
Deformation Rate Peak Shear Stress Shear stress @ er Initial height of sar Height of sample b	(in/min) s (ksf) nd of test (ksf) mple (in) pefore shear (in) e (in)	0.002 1.14 0.74 1 0.9937
Deformation Rate Peak Shear Stress Shear stress @ er Initial height of sar Height of sample b Diameter of sampl	(in/min) s (ksf) ◆ nd of test (ksf) ● nple (in) pefore shear (in) le (in) ntent (%)	0.002 1.14 0.74 1 0.9937 2.42

DIRECT SHEAR TEST

(ASTM D3080)

HAI Pr No.: TRT-16-017 Tested by: KL Checked by: MZ Date: 10/24/2016


HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

Client: Project Name: Project Number: Boring No.:		ark Water C	apture
Sample No.:	R-4		
Depth (ft):	11-11.5'		
	Olive Brown, Fat Undisturbed Ring		and (CH)
Type of test:	Consolidated, Dr	ained	
Normal Stragg (kg	٤١	A]
Normal Stress (ksi		1.5]
Normal Stress (ks Deformation Rate		+ -	
	(in/min)	1.5	-
Deformation Rate	(in/min) s (ksf) ◆	1.5 0.002	
Deformation Rate Peak Shear Stress Shear stress @ er	(in/min) s (ksf)	1.5 0.002	
Deformation Rate Peak Shear Stress Shear stress @ er Initial height of sar	(in/min) s (ksf)	1.5 0.002 1.46 0.72 1	
Deformation Rate Peak Shear Stress Shear stress @ er Initial height of sar Height of sample b	(in/min) s (ksf) and of test (ksf) mple (in) pefore shear (in)	1.5 0.002 1.46 0.72	
Deformation Rate Peak Shear Stress Shear stress @ er Initial height of sar Height of sample to Diameter of sample	(in/min) s (ksf) ◆ nd of test (ksf) ● mple (in) pefore shear (in) le (in)	1.5 0.002 1.46 0.72 1 0.9862	
Deformation Rate Peak Shear Stress Shear stress @ er Initial height of sar Height of sample b	(in/min) s (ksf) ad of test (ksf) mple (in) before shear (in) le (in) ntent (%)	1.5 0.002 1.46 0.72 1 0.9862 2.42	

DIRECT SHEAR TEST

(ASTM D3080)

HAI Pr No.: TRT-16-017 Tested by: KL Checked by: MZ Date: 10/24/2016

UNCONSOLIDATED UNDRAINED (UU) TRIAXIAL COMPRESSION TEST

Р	roject No.:	Carriage Crest Park Water TRT-16-017 Extruded from a 5" ring	Capture			Project I T	Tetra Tecl Location: ested By: ecked by:	 KL	
Boring	Sample	Sample Descripti	on	Depth	Symbol	$\sigma_{d,f}$	ε _f	$\sigma_{1,\mathrm{f}}$	σ _{3,f}
No. B-3	No. R-5	Dark Olive, Fat Clay with	Sand (CH)	(ft) 11-11.5	0	(ksf) 4.27	(%) 13.28	(ksf) 5.77	(ksf) 1.50
		Symbol		0					
		Sample		1 Initial					
		Height	(in.)	5.07					
		Diameter Dry Density	(in.) (pcf)	2.41 106.4	-				
		Moisture Content	(%)	20.3					
	6 —	— — — — — — — — — — — — — — — — — — —			— — —		<u> </u>	ı	
	• • •			- 			- - -		
	Principal Stress Difference (ksf)		<u> </u>					!	
	s Differ			 _	 ⊢			 	
	al Stres								
	Princip			- 					
					 I		·	·	
	0 -	5 10)	15	20		25	30	
			Axial	Strain (%					
			 I		 		 	, 	
	3 —		 		_ <u> </u> _		 		
	t (ksf)			I	I			I I	
	Shear Stress, a (ksf)	! + _		_	_ + -	_ _		!	
	Shear		I	I I				1	
	1		-	_ _	— — — —	- <u> </u> -	— —		
	0				 		 		
	0	1 2	3 Total Nor	4 mal Stress	5 , σ (ksf)	6	7	8	
							T (1.	general acco	ndon oo v

UNCONSOLIDATED UNDRAINED (UU) TRIAXIAL COMPRESSION TEST

Proj	ect No.:	Carriage Crest Park Water Capture TRT-16-017 Extruded from a 5" ring			Project I T	Tetra Tec Location: ested By: ecked by:	 KL	
Boring S	Sample No.	Sample Description	Depth (ft)	Symbol	σ _{d,f}	ε _f (%)	σ _{1,f} (ksf)	σ _{3,f}
B-4	R-6	Dark Olive, Fat Clay with Sand (CH)	16-16.5'	0	(ksf) 3.41	24.30	5.41	(ksf) 2.00
		Symbol	0					
		Sample	1 Initial	- -				
		Height (in.) Diameter (in.)	5.04 2.41					
		Dry Density(pcf)Moisture Content(%)	100.3 20.0					
Principal Stress Difference (ksf)	$6 \\ 5 \\ 4 \\ 2 \\ 1 \\ 0 \\ 0 \\ 4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $					
Shear Stress, τ (ksf)	$\begin{array}{c} 3 \\ 2 \\ 1 \\ 0 \\ 0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 	$ $ $-$ $+$ $-$ $+$ $-$ $+$ 5 s. σ (ksf)				

Table 1 - Laboratory Tests on Soil Samples

Hushmand Associates Carriage Crest Park Water Capture Your #TRT-16-016, HDR Lab #16-0759LAB 21-Oct-16

Sample ID				
-			B-3 SK-1	B-4 SPT-7
			@ 0-5'	@ 17.5-19
Resistivity		Units		
as-received		ohm-cm	11,600	1,080
minimum		ohm-cm	680	480
рН			7.1	7.4
Electrical				
Conductivity		mS/cm	0.30	0.43
Chamical Analy				
Chemical Analy Cations	ses			
calcium	Ca ²⁺	mg/kg	73	ND
magnesium		mg/kg	23	21
sodium	Na ¹⁺	mg/kg	263	460
potassium	K ¹⁺	mg/kg	20	12
Anions				
carbonate	CO ₃ ²⁻	mg/kg	ND	ND
bicarbonate		⁻ mg/kg	259	85
fluoride	F ¹⁻	mg/kg	6.0	1.3
chloride	Cl ¹⁻	mg/kg	69	213
sulfate	SO ₄ ²⁻	mg/kg	330	496
phosphate	PO4 ³⁻	mg/kg	6.3	4.2
Other Tests				
ammonium	NH4 ¹⁺	mg/kg	ND	ND
nitrate	NO ₃ ¹⁻	mg/kg	ND	ND
sulfide	S ²⁻	qual	na	na
Redox		mV	na	na

Minimum resistivity per CTM 643, Chlorides per CTM 422, Sulfates per CTM 417

Electrical conductivity in millisiemens/cm and chemical analyses were made on a 1:5 soil-to-water extract.

mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

Appendix D

Liquefaction Analyses

			SPT LIQUEFACTION SUSCEPTIBILITY AND EARTHQUAKE INDUCED SETTLEMENT You must input all fields highlighted in blue Insert or delete rows only immediately above the red row. M 7.38 ==> MSF 1.042 a														only for evaluation of liq			ll be evaluated.	P _{atm} =	= 100 = 2088.54	kPa											
	Borir	ng:	B-1		M PGA	7.38 0.65	==>	MS	F 1.0	142 g														σ _{ref} = M _{ban}	2000	psf								
							Boring Data	1									Earth	quake Loa	ading			Deriv	ation of (N1)60,cs					Soil Earthqu	ake Resis	ance		Factor of Safety		
4	mo		# ?			e =		onis								ater	SPT Readings and Correcti convert California sampler blowcourts into SPT and up Correction for borehole diameter D _B (in)							·							Factor of Safety against Liquefaction			
2	ŧ		ser	SS		- ide		5		ent	-		00	ΦE	e ss	- AV							D _B (in)	8	C _B	1.15								
/er	8		o bre	kne		E		2 × 1	Ĩ	out	Ę	es:	idd	sui	idd	uno	Cycli	c Stress F	Ratio	Correction for sampling r	nethod			no liner	Cs	1.2		Cyclic Res		tio	Total eva	aluated profile thickness	51.50	feet
Laj	aye		/u	hic		aye	SPT - N	S O	ji ji	Ű	- E	S	res	rbs	9 E	ac		CSR		Correction for energy rati	0				Cc	1.35		(RR		Profile th	ickness susceptible to liquefaction	5.00	feet
\$	<u> </u>		y es	E		2		E Q M	7	- E	a la	otal laye	la ye	e P Bye	aye	lirst				Correction for rod length			r _{stickup} (ft)	3	see C _R									
뒾	P t		P	aye		÷		8	ā	ois	P	Р _е	P @	2 0	£ 0	or				Correction for effective or	rerburden pres	sure			see C _N						not interpreted	1		
å	ept		2	-		de		<u>^</u>		2			_	_		ast				Correction for % fines					see g. B								1	
			U			5		18								Ĕ	rd	CSR	CSR _{7.5}	C _N	rod length	CR	(N1)60	α	β	(N1)00.08	ĸ,	CRR _{SPT.CS}	CRR	CRR	FS _{SPT.cs,Ko}	Interpreted Factor of Safety against liquefaction	Liquefiable thickness	for plotti only
feet	feet	t		feet	feet	meters		%	pcf	%	pcf	psf	psf	psf	psf						m	%						Idriss	Rauch				ft	
0	4		no	4.0	2.0	0.6	12	30.0		16.0	127.6	255	0.0	0.0	255	n/a	0.997	0.421	0.404	2.000	1.5	0.75	33.5	4.706	1.154	43.4	1.000	no liq	no liq	no liq	no liq	Not liquefiable - no groundwater	0.00	5.00
4	10		no	6.0	7.0	2.1	11	70.0	110		127.6	893	0.0	0.0	893	n/a	0.986	0.416	0.400	1.529	3.0	0.75	23.5	5.000	1.200	33.2	1.000	no liq	no liq	no liq	no liq	Not liquefiable - no groundwater	0.00	5.00
10	14.5	5	yes	4.5	12.3	3.7	18	70.0	109		129.7	1568	140.4	280.8	1427	10	0.974	0.452	0.434	1.210	4.6	0.85	34.5	5.000	1.200	46.4	1.000	no liq	no liq	no liq	no liq	Not liquefiable - fines > 50%	0.00	5.00
4.5	17		yes	2.5	15.8	4.8	32	30.0	113		130.0	2022	358.8	436.8	1663	n/a	0.967	0.497	0.477	1.121	5.7	0.85	56.8	4.706	1.154	70.3	1.000	no liq	no liq	no liq	no liq	Not liquefiable - too dense	0.00	5.00
17	20		yes	3.0	18.5	5.6	16	56.0			127.6	2376	530.4	624.0	1846	n/a	0.961	0.523	0.502	1.064	6.6	0.95	30.1	5.000	1.200	41.1	1.000	no liq	no liq	no liq	no liq	Not liquefiable - fines > 50%	0.00	5.00
20	25		yes	5.0	22.5	6.9	34	70.0	110	16.0	127.6	2886	780.0 1092 0	936.0 1248.0	2106	n/a	0.950	0.550	0.528	0.996	7.8	0.95	59.9	5.000	1.200	76.9	0.994	no liq	no liq	no liq	no liq	Not liquefiable - fines > 50%	0.00	5.00
25	30		yes ves	5.0 5.0	27.5 32.5	8.4 9.9	26	31.0 20.0	96 96	26.0 26.0	121.0	3508	1092.0	1248.0	2416 2709	n/a n/a	0.932	0.572	0.549	0.930	9.3 10.8	0.95	43 25	4.770 3.615	1.163	54.5	0.971	no liq no liq	no liq 0.475	no liq 0.452	no liq 0.81	Not liquefiable - too dense 0.81 - liquefieable - FS < 1.3	0.00 5.00	5.00 0.81
25	40		ves	5.0	37.5	9.9	24	20.0	96	26.0	121.0	4717	1716.0	1872.0	3001	n/a	0.907	0.562	0.556	0.834	12.3	1.00	53	3.615	1.079	50.1	0.931	no liq	no lia	0.452 no lia	no lig	Not liquefiable - too dense	0.00	5.00
40	40		ves	5.0	42.5	13.0	34	31.0		26.0	121.0			2184.0	3294	n/a	0.872	0.579	0.556	0.796	12.3	1.00	50	4,770	1.163	63.4	0.932	no liq	no liq	no liq	no liq	Not liquefiable - too dense	0.00	5.00
45	51.4	5	ves	6.5	48.3	14.7	32	5.0	110					2589.6	3631	n/a	0.771	0.540	0.518	0.758	15.6	1.00	45	0.000	1.000	45.2	0.894	no liq	no lia	no liq	no liq	Not liquefiable - too dense	0.00	5.00

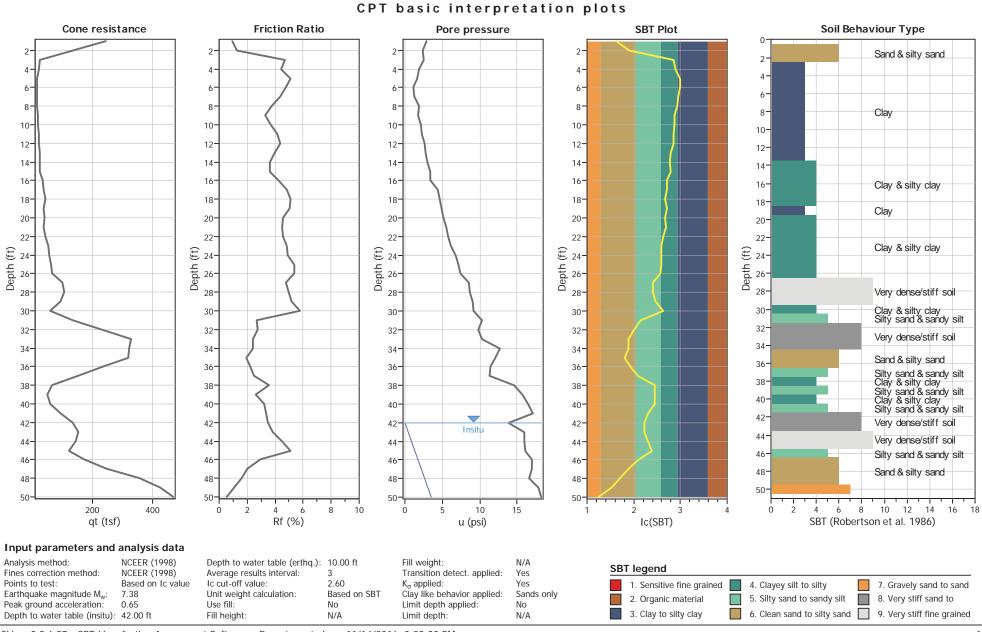
	EAR	THQUAKE-IND	UCED SE	TLEME	NT OF SATURATED SAN	ID					EAR	THQUAKE	E-INDUC	ED SETTL	EMENT (OF DRY S	AND .]	Settlement	Distribution
	Earth	quake-induce	d Settleme by Tokim		turated Sand (fines < 50 Seed	%)					Eartho	qauke-ind		ttlement of Daniel Pra		nd (fines <	50%)					Distribution of Earthquake-
	Total	liquefaction set	tlement		0.64	inches							Total se	ttlement o	f dry sand			0.02	inches		Layer settlement	induced settlement (top
es% Correction Tokimetsu & Seed	or satur						ultidirect quivalent r		ect coeffie I cycles	cient	B Nc	2 14.05									(compression) both liquefied and dry sand	of layer) Surface settlement 0.66
Fine	(¹ N)	CSR75	εν	Δz	$S_i = \varepsilon_{vi} \Delta z_i$	Scumul	K	σ_{m}	G _{max}	r _d	$\tau_{\rm av}$	а	b	γ	ε ₁₅	ε _{Nc}	Δz	$S_i = \varepsilon_{vi} \Delta z_i$	Scumul		Slayer	Scumul
			%	feet	in	inches			psf		psf						feet	in	in		in	in
8.00	41.5	0.404	0.00	4.00	no GW	0.00	0.50	170	916749	1.000	108	0.127	28075	0.046%	0.018%	0.018%	4.00	0.02	0.02		0.02	0.66
9.00		0.400	0.00	6.00	no GW	0.00	0.50	595	1568437	0.995	376	0.136	13240	0.089%	0.049%	0.047%	6.00	not sand (%f > 50%)	0.02		0.00	0.64
9.00	43.5	0.434	0.00	4.50	not sand (%f > 50%) 0.00	0.00	0.50	952	2216326	0.985	594	0.143	9993	0.072%	0.026%	0.026%	4.50 2.50	below GW below GW	0.02		0.00	0.64
8.00	64.8 39.1	0.477	0.00	2.50 3.00	not sand (%f > 50%)	0.00	0.50	1109 1230		0.976	686 754	0.146	9117 8566	0.053%	0.012%	0.011%	2.50	below GW	0.02		0.00	0.64
9.00	68.9	0.502	0.00	5.00	not sand (%f > 50%)	0.00	0.50	1404	3186675		847	0.146	7913	0.085%		0.035%	5.00	below GW	0.02		0.00	0.64
8.00	50.8	0.549	0.00	5.00	0.00	0.00	0.50	1611	3042899	0.930	949	0.151	7288	0.052 %	0.020%	0.020%	5.00	below GW	0.02		0.00	0.64
2.00	26.5	0.558	1.07	5.00	0.64	0.64	0.50	1806		0.905	1035	0.159	6805	0.111%	0.068%	0.066%	5.00	below GW	0.02		0.64	0.64
5.00	57.8	0.556	0.00	5.00	0.00	0.64	1.50	4002	4970264	0.877	1112	0.202	4221	0.028%	0.007%	0.007%	5.00	below GW	0.02		0.00	0.00
8.00	58.4	0.543	0.00	5.00	0.00	0.64	2.50	6588	6472460	0.847	1179	0.252	3130	0.021%	0.005%	0.005%	5.00	below GW	0.02		0.00	0.00
3.00	48.2	0.518	0.00	6.50	0.00	0.64	3.50	9683	7010196	0.811	1245	0.312	2484	0.020%	0.008%	0.007%	6.50	below GW	0.02		0.00	0.00

Boring	1	B-1			Summary of a	nalysis				First ground	lwater at		10 feet	1			First	groundwater	at	10	feet
					т	otal dry sand settlement 0	1.64 inches 1.02 inches 1.66 inches		B-1	Factor of Safety a						3-1		Settlement (in)		-
					Number of potent // De Total thickr	er of evaluated intervals ially liquefiable intervals werage Factor of Safety 0. epth to first groundwater 10 tess of evaluated profile 51	11 1 81 .00 feet .50 feet	0.0 0 + 10 -		0.5	1.0 FS -	1.5	2.0		10			2	3	4	
Earthqua	ake loading:		M PGA	7.38 0.65				20 •							20 •	•					
Depth to Layer Top	Depth to Layer Bottom	SPT - N	Fines %	FS _{SPT.cs.Ko}	Interpreted Fa against liq		Settlement	8pth (ft) 05						epth (ft)	30						
feet	feet						in	De						ă	¥ .						
0	4	12	30	no liq	Not liquefiable	 no groundwater 	0.02														
4	10	11	70	no liq	Not liquefiable	- no groundwater	0.00	40 -							40 🔶 🚽					-	
10	14.5	18	70	no liq	Not liquefiable	- fines > 50%	0.00						-								
14.5	17	32	30	no liq	Not liquefiable	- too dense	0.00			z			NOIL		•						
17	20	16	56	no liq	Not liquefiable	- fines > 50%	0.00			LIQUEFACTION	+	⊢*	5								
20	25	34	70	no liq	Not liquefiable	- fines > 50%	0.00	50 •		AC			LIQUEFAC		50				-		
25	30	26	31	no liq	Not liquefiable	 too dense 	0.00	50 -		5			5								
30	35	15	20	0.81	0.81	- liquefieable - FS < 1.3	0.64			8			2								
35	40	34	20	no liq	Not liquefiable	- too dense	0.00			- S			N N								
40	45	34	31	no liq	Not liquefiable	- too dense	0.00						~		60						
45	51.5	32	5	no liq	Not liquefiable	 too dense 	0.00	60													

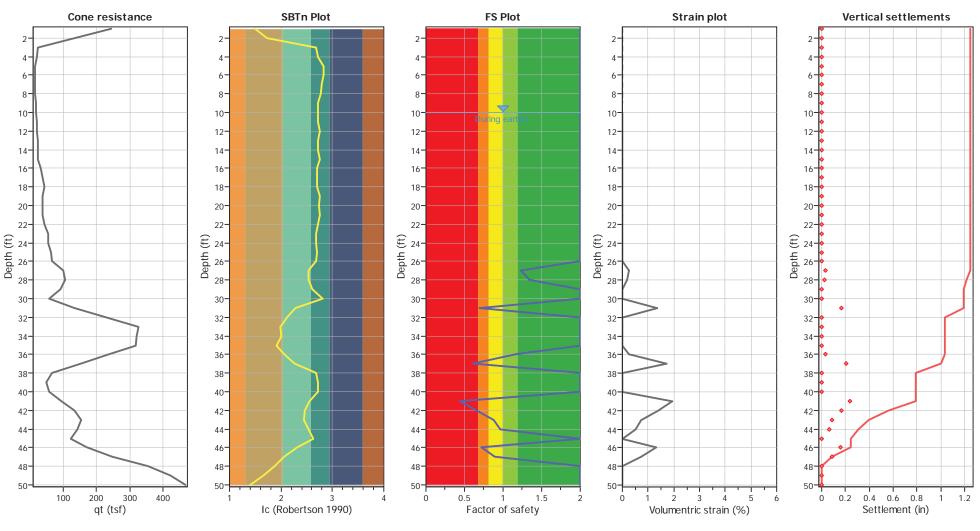
				JEFACTION	SUSCEPTIBILIT	Y AND EA			OUCED S			above the	e red row.		1	This sprea	dsheet is	suitable o	only for evaluation of liqu	efaction of	SANDs.		P _{am} =	= 100	kPa								
	Boring		-	M PGA	7.38 0.65	==>	MSF	1.04	<mark>2</mark> g						1	f fines con	itent great	er than 5	0% is input, sensitivity of	the fine-gra	ained soils w	ll be evaluated.	σ _{ref} = M _{bas}		psf								
						Boring Data	1									Eartho	juake Loa	ding			Deri	ation of (N1)60.ct					Soil Earthqua	ake Resista	ince	1	Factor of Safety		
۹.	mo	nt ?			ale		ion is		-						ater				Correction for borehole dis			ngs and Corre counts into SPT and Dn (in)	d use SPT blowcounts o	only Cn	1.15						Factor of Safety against Liquefaction		
2	Bott	0 S 0	ess		nid		5	~	ten	ž	alle ss	die	a E	ess die	Mpu				Correction for sampling m			D _B (iii)	no liner	C _s	1.15					Total our	luated profile thickness	51.50	feet
aye	er	ng 5	- K		-		× 5 5	2 11	Log Log	ii.	mid	mid	bott	aid Str	lou	Cyclic	CSR	latio	Correction for energy ratio	aliou			nome	CE			Cyclic Resi	istance Rat RR	10		ickness susceptible to liquefaction	0.00	feet
8	Laj	ate es /	Ē		lay	SPT - N	ine:	5	E E	2	al S Ver	Pre)	Ver Ver	yer	sto				Correction for rod length			r _{stickup} (ft)	3	see C _p	1.00		-			i tome u		0.00	ICCL
Ē	5	w pu	iyer		4 2			- E	oistt	Tota	Dia	Pore @ b)	Bore @ lay	2 lar	or fit				Correction for effective over	rburden nrei	001170	stickup (")		see C _N						not interpreted			
De	epti	no	Ľ		Dept		8		W		~	Π.Ο	E @	≞ ∾	stf				Correction for % fines	rourden pre.	33410			see a. B						not interpreted		<u> </u>	
	٩	U					1.87								₽	r _d	CSR	CSR _{7.5}	C _N	rod length	C _R	(N1)00	α	β	(N1)00,08	K,	CRR	CRR _{SPT,CS}	CRR _{SPT,CS,Ke}	FS _{SPT.cs,Ko}	Interpreted Factor of Safety against liquefaction	Liquefiable thickness	for plotti only
eet	feet		feet	feet	meters		%	pcf	%	pcf	psf	psf	psf	psf						m	%						Idriss	Rauch				ft	
)	7	no	7.0	3.5	1.1	12	30.0	113	15.0	130.0	455	0.0	0.0	455				0.403	2.000	2.0	0.75	33.5	4.706	1.154	43.4	1.000	no liq	no liq	no liq	no liq	Not liquefiable - no groundwater	0.00	5.00
	10	no	3.0	8.5	2.6	12	70.0	96	15.0	110.4	1075	0.0	0.0	1075	n/a			0.398	1.394	3.5	0.75	23.4	5.000	1.200	33.0	1.000	no liq	no liq	no liq	no liq	Not liquefiable - no groundwater	0.00	5.00
2	15	yes	5.0 5.0	12.5 17.5	3.8 5.3	16	70.0	109 105	19.0	129.7 128.1	1565 2210	156.0 468.0	312.0 624.0	1409 1742	10 n/a	0.974 0.963	0.457	0.439	1.217	4.7 6.2	0.85	30.8 21.3	5.000 5.000	1.200	42.0	1.000	no liq no liq	no liq 0.515	no liq 0.515	no liq 1 04	Not liquefiable - fines > 50% Not liquefiable - fines > 50%	0.00	5.00
2	20	yes ves	5.0	22.5	6.9	27	20.0	105	22.0	128.1	2850	466.0	936.0	2070	n/a	0.950	0.516	0.495	1.005	7.8	0.95	48.0	3.615	1.200	30.6	0.997	no liq	no lia	no lia	no lia	Not liquefiable - too dense	0.00	5.00
í.	25	yes	5.0	22.5	8.4	21	65.0	116	10.0	120.1	3489	1092.0	1248.0	2397	n/a	0.930	0.533	0.550	0.933	9.3	0.95	36.3	5.000	1.200	48.6	0.997	no liq	no liq	no liq	no liq	Not liquefiable - fines > 50%	0.00	5.00
5	35	yes	5.0	32.5	9.9	41	25.0	96	16.0	111.4	4087	1404.0	1560.0	2683	n/a	0.907	0.584	0.560	0.882	10.8	1.00	67	4.289	1.115	79.4	0.953	no liq	no liq	no liq	no liq	Not liquefiable - too dense	0.00	5.00
5	40	yes	5.0	37.5	11.4	50	25.0	96	16.0	111.4	4644	1716.0	1872.0	2928		0.872	0.584	0.561	0.845	12.3	1.00	79	4.289	1.115	92.0	0.936	no liq	no liq	no lig	no liq	Not liquefiable - too dense	0.00	5.00
0	45	yes	5.0	42.5	13.0	23	7.0	110	8.0	118.8	5219		2184.0	3191	n/a	0.828	0.572	0.549	0.809	13.9	1.00	35	0.120	1.009	35.1	0.920	no liq	no liq	no liq	no liq	Not liquefiable - too dense	0.00	5.00
5	50	yes	5.0	47.5	14.5	19	20.0	116	10.0	127.6		2340.0		3495	n/a	0.778	0.549	0.527	0.773	15.4	1.00	27	3.615	1.079	33.2	0.902	no liq	no liq	no liq	no liq	Not liquefiable - too dense	0.00	5.00
0	51.5	yes	1.5	50.8	15.5	50	10.0	98	9.0	106.8	6234	2542.8	2589.6	3691	n/a	0.745	0.532	0.510	0.752	16.4	1.00	70	0.869	1.022	72.5	0.891	no liq	no liq	no liq	no liq	Not liquefiable - too dense	0.00	5.00

First groundwater at

Settlement (in)

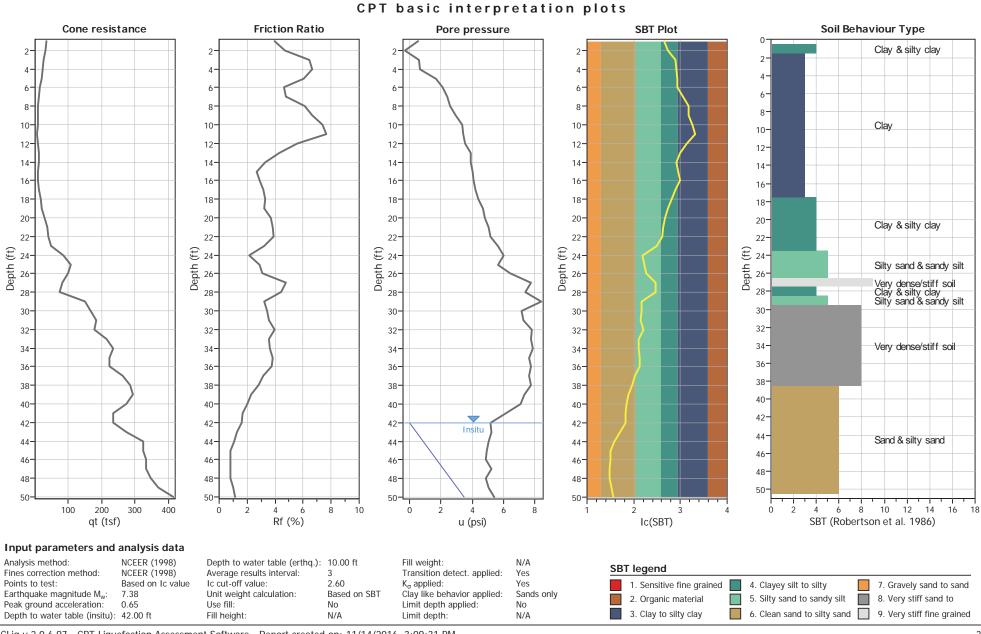

B-3

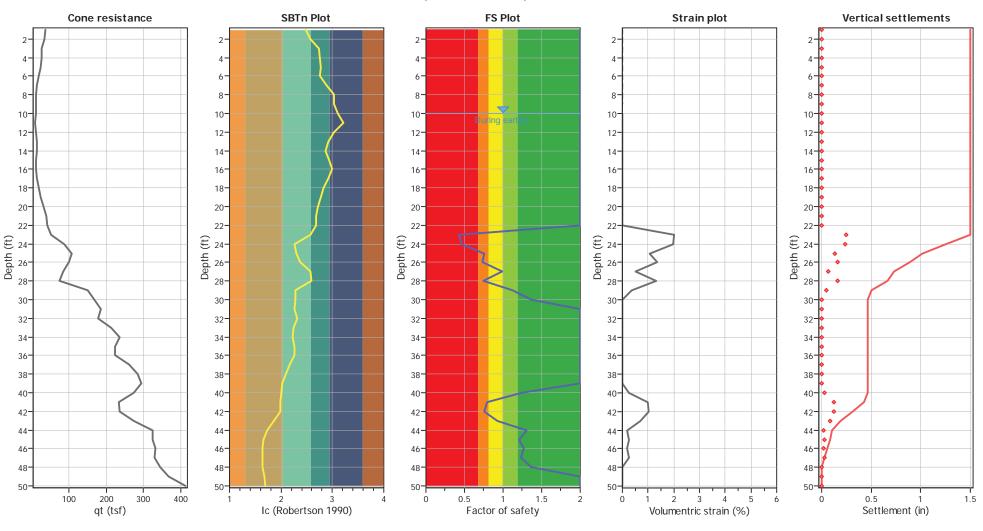
10 feet


	EART	HQUAKE-IND	UCED SE	TLEMEN	IT OF SATURATED SAN	ID					EAR	THQUAKE	-INDUCI	ED SETTL	EMENT O	OF DRY SA	AND			Settlement	Distribution
	Eartho	quake-induce	by Tokim		turated Sand (fines < 50 Seed	%)					Earth	qauke-ind		tlement o Daniel Pra		nd (fines <	50%)				Distribution of Earthquake-
	Total li	iquefaction set	tlement		0.33	inches							Total set	tlement of	f dry sand			0.04	inches	Layer settlement	induced settlement (top of layer)
es% Correction Tokimatsu & Seed	(N1)60 ps. stimut						iltidirectio uivalent nu			zient	B Nc	2 14.05								(compression) both liquefied and dry sand	Surface settlement 0.37
Pine br T	ľ,	CSR _{7.5}	٤٧	Δz	$S_i = \varepsilon_{vi} \Delta z_i$	Scumul	Ko	σm	G _{max}	r _d	$\tau_{\rm av}$	а	b	γ	ε ₁₅	ε _{Nc}	Δz	$S_i = \varepsilon_{vi} \Delta z_i$	Scumul	Slayer	Scumul
			%	feet	in	inches			psf		psf						feet	in	in	in	in
8.00	41.5	0.403	0.00	7.00	no GW	0.00	0.50			0.999	192	0.130	19849	0.054%	0.021%	0.021%	7.00	0.04	0.04	0.04	0.37
9.00	32.4	0.398	0.16	3.00	no GW	0.00	0.50			0.993	451	0.138	11845	0.094%	0.052%	0.050%	3.00	not sand (%f > 50%)	0.04	0.00	0.33
9.00	39.8	0.439	0.00	5.00	not sand (%f > 50%)	0.00				0.985	586	0.142	10071	0.079%	0.032%	0.031%	5.00 5.00	below GW	0.04	0.00	0.33
9.00 5.00	30.3 53.0	0.495	0.78	5.00 5.00	not sand (%f > 50%) 0.00	0.00	0.50 0.50		130960 832459	0.970	714 833	0.147 0.151	8869 7996	0.113% 0.066%	0.068%	0.066%	5.00	below GW below GW	0.04	0.00	0.33 0.33
9.00	45.3	0.550	0.00	5.00	not sand (%f > 50%)	0.00	0.50		917708		942	0.151	7322		0.019%	0.019%	5.00	below GW	0.04	0.00	0.33
7.00	74.4	0.560	0.00	5.00	0.00	0.00			635380		1025	0.159	6844			0.023%	5.00	below GW	0.04	0.00	0.33
7.00	85.7	0.561	0.00	5.00	0.00	0.00			988342		1085	0.162	6494		0.007%	0.007%	5.00	below GW	0.04	0.00	0.33
3.00	37.7	0.549	0.00	5.00	0.00	0.00				0.847	1142	0.207	4069		0.018%	0.018%	5.00	below GW	0.04	0.00	0.33
5.00	32.4	0.527	0.56	5.00	0.33	0.33	2.50	5990 5	370964	0.816	1205	0.260	3021	0.027%	0.015%	0.014%	5.00	below GW	0.04	0.33	0.33
3.00	73.1	0.510	0.00	1.50	0.00	0.33	3.50	844 8	271010	0.795	1241	0.315	2460	0.017%	0.004%	0.003%	1.50	below GW	0.04	0.00	0.00

0.65 25.00 16.25

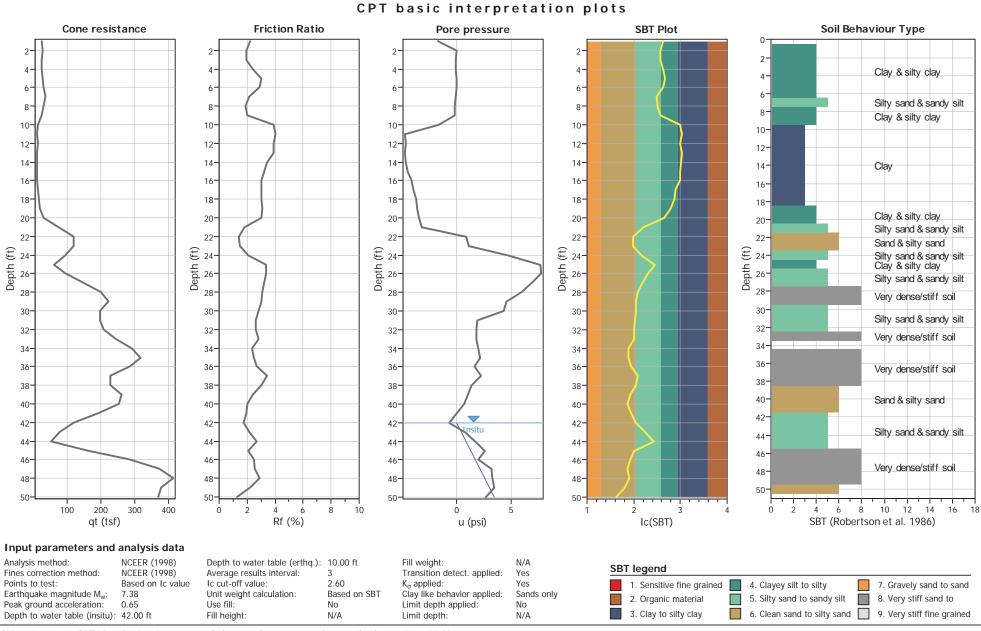
Boring		B-3			Summary of a	inalysis				First groundwat	ter at	10	feet	
					1	al liquefaction settlement otal dry sand settlement	0.33 inches 0.04 inches		B-3 Facto	r of Safety agai	inst Liquefactio	n		
						uake-induced settlement	0.37 inches 11	0.0	0.5	1.0	1	.5	2.0	
					Number of poten	tially liquefiable intervals Average Factor of Safety	0 no liquefaction	•			FS = 1.3	+		
					Total thick	epth to first groundwater ness of evaluated profile usceptible to liquefaction	10.00 feet 51.50 feet 0.00 feet	10 •						1
Earthqua	ake loading:		M PGA	7.38 0.65				20 •						2
Depth to Layer Top	Depth to Layer Bottom	SPT - N	Fines %	FS _{SPT.ck} Ko	Interpreted Fi against li	actor of Safety quefaction	Settlement	00 (ft)						Depth (ft)
feet	feet						in	De						ă
0	7	12	30	no liq	Not liquefiable	 no groundwater 	0.04							
7	10	12	70	no liq	Not liquefiable	- no groundwater	0.00	40 •						
10	15	16	70	no liq	Not liquefiable	- fines > 50%	0.00					-		
15	20	11	70	1.04	Not liquefiable	- fines > 50%	0.00			z		LIQUEFACTION		
20	25	27	20	no liq	Not liquefiable	- too dense	0.00			LIQUEFACTION	- +→	5		
25	30	22	65	no liq	Not liquefiable	- fines > 50%	0.00	50 •		Q.		FA		
30	35	41	25	no liq	Not liquefiable	- too dense	0.00	- 00		E		9		
35	40	50	25	no liq	Not liquefiable	- too dense	0.00			2		ğ		
40	45	23	7	no liq	Not liquefiable	- too dense	0.00			ž		No		
45	50	19	20	no lig	Not liquefiable	- too dense	0.33					ž		
50	51.5	50	10	no lia	Not liquefiable	- too dense	0.00	60						

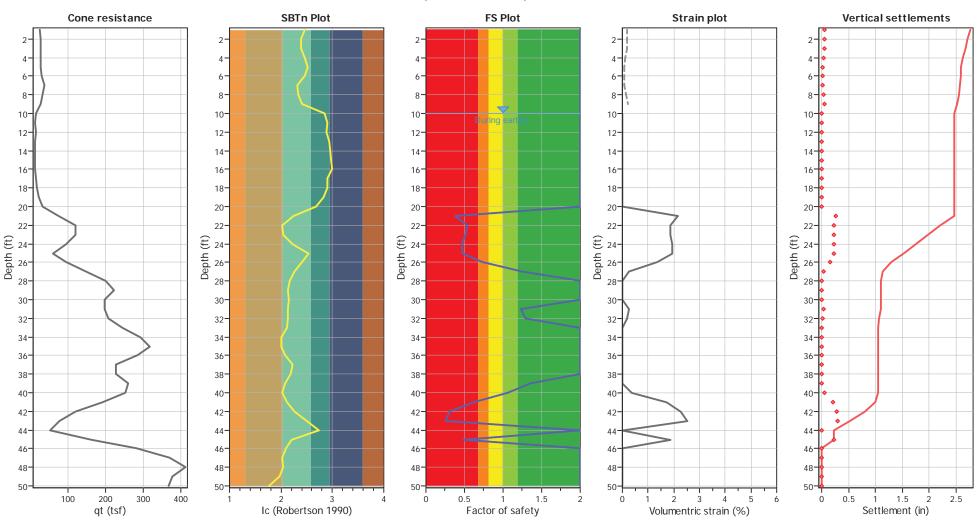

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:30 PM


Abbreviations

(q _t :	Total cone resistance (cone resistance q _c corrected for pore water effects)
	c:	Soil Behaviour Type Index
	FS:	Calculated Factor of Safety against liquefaction
,	Volumentric strain:	Post-liquefaction volumentric strain

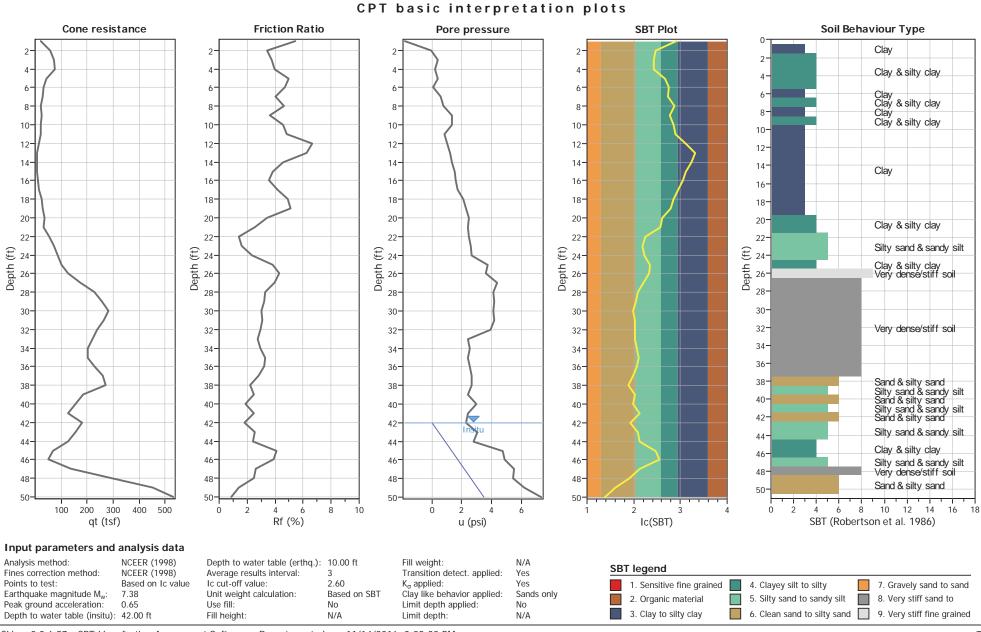
CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:30 PM Project file: L:\02 - PROJECTS\2016 Projects\TET 16-101E (4552-0101) Carriage Crest Park Water Capture - Carson\04 Analyses\CPT Liquefaction\Carriage Crest Cliq.clq

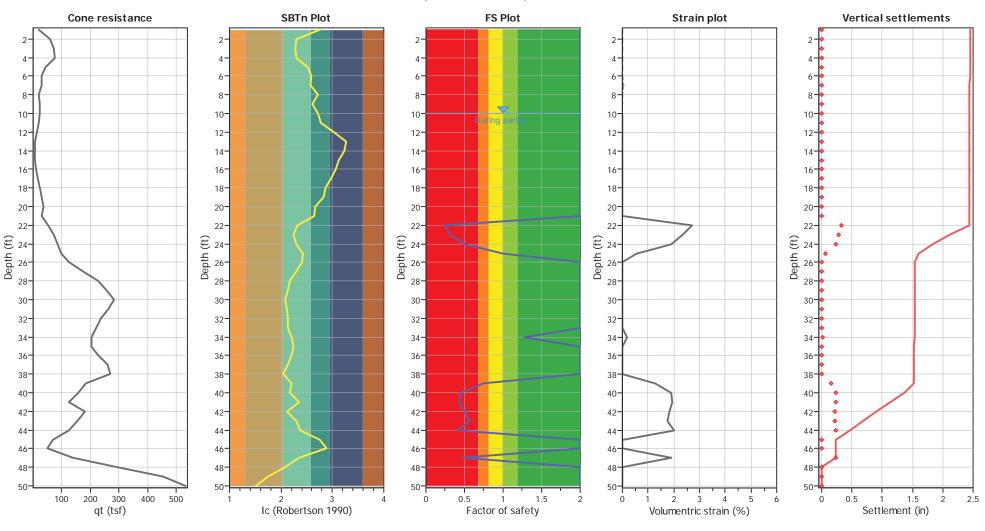

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:31 PM


Abbreviations

qt:	Total cone resistance (cone resistance q _c corrected for pore water effects)
I _c :	Soil Behaviour Type Index
FS:	Calculated Factor of Safety against liquefaction
Volumentric strain:	Post-liquefaction volumentric strain

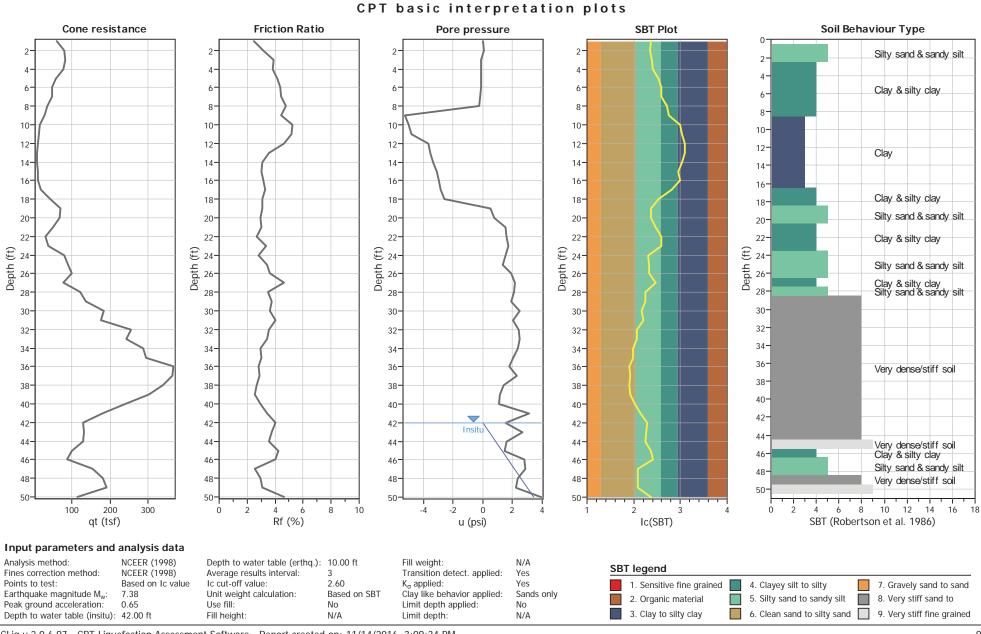
CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:31 PM Project file: L:\02 - PROJECTS\2016 Projects\TET 16-101E (4552-0101) Carriage Crest Park Water Capture - Carson\04 Analyses\CPT Liquefaction\Carriage Crest Cliq.clq

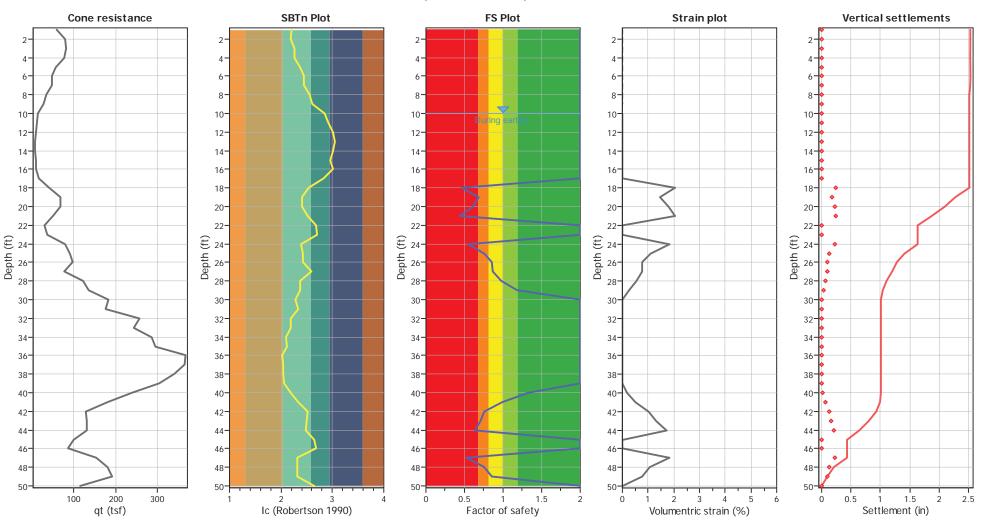

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:32 PM


Abbreviations

(q _t :	Total cone resistance (cone resistance q _c corrected for pore water effects)
	c:	Soil Behaviour Type Index
	FS:	Calculated Factor of Safety against liquefaction
1	Volumentric strain:	Post-liquefaction volumentric strain

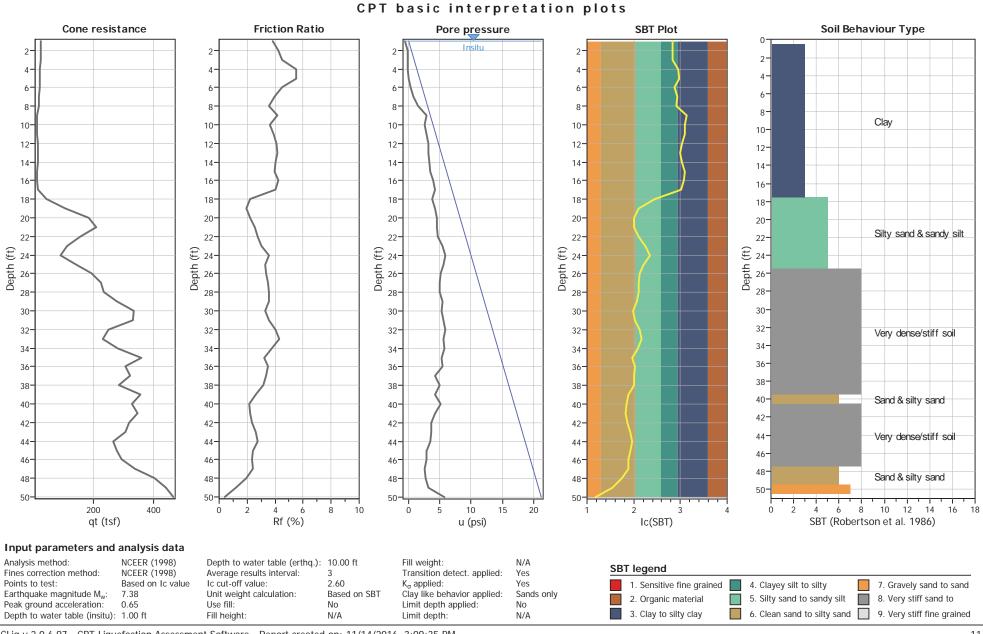
CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:32 PM Project file: L:\02 - PROJECTS\2016 Projects\TET 16-101E (4552-0101) Carriage Crest Park Water Capture - Carson\04 Analyses\CPT Liquefaction\Carriage Crest Cliq.clq

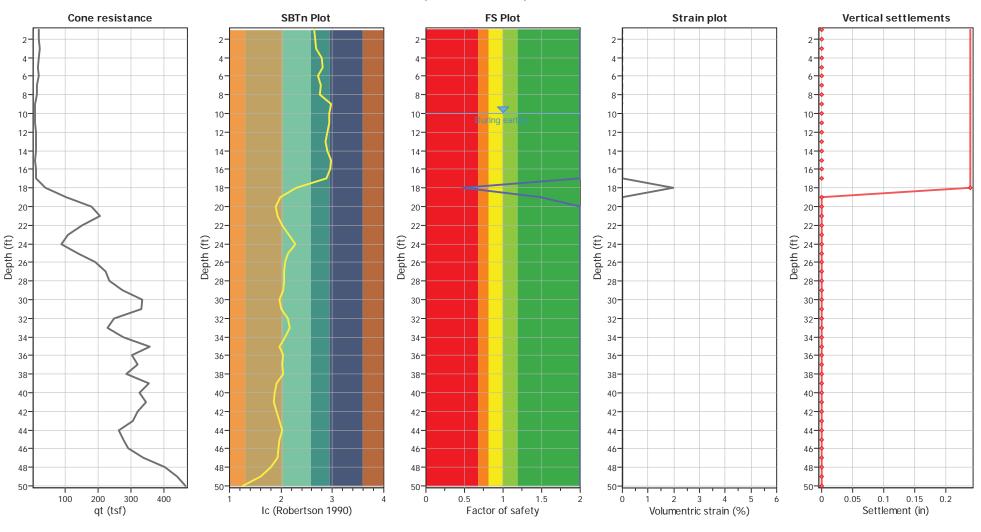

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:33 PM


Abbreviations

q _t :	Total cone resistance (cone resistance q _c corrected for pore water effects)
I _c :	Soil Behaviour Type Index
FS:	Calculated Factor of Safety against liquefaction
Volumentric strain:	Post-liquefaction volumentric strain

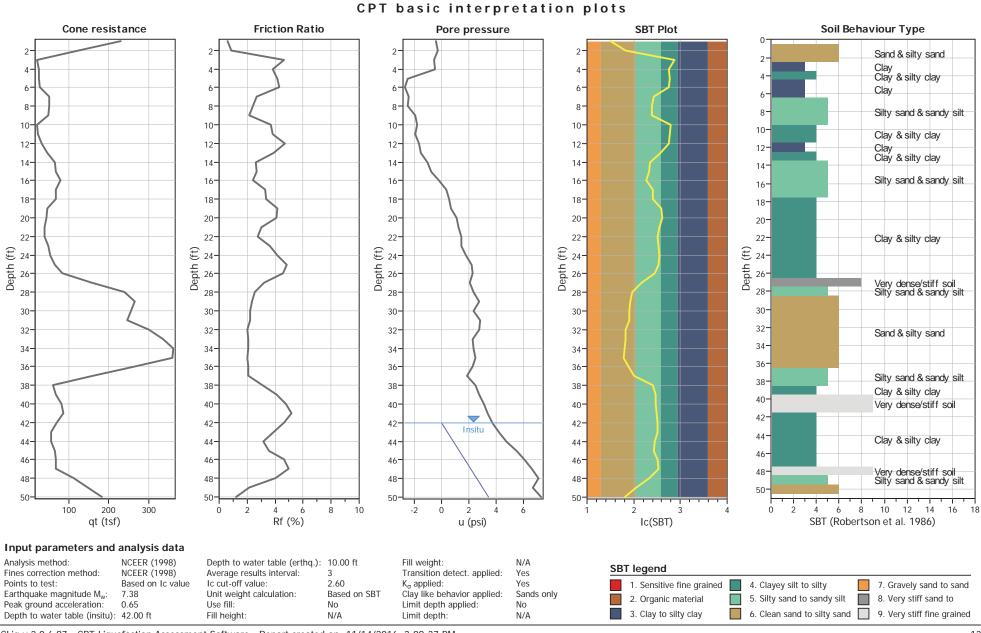
CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:33 PM Project file: L:\02 - PROJECTS\2016 Projects\TET 16-101E (4552-0101) Carriage Crest Park Water Capture - Carson\04 Analyses\CPT Liquefaction\Carriage Crest Cliq.clq

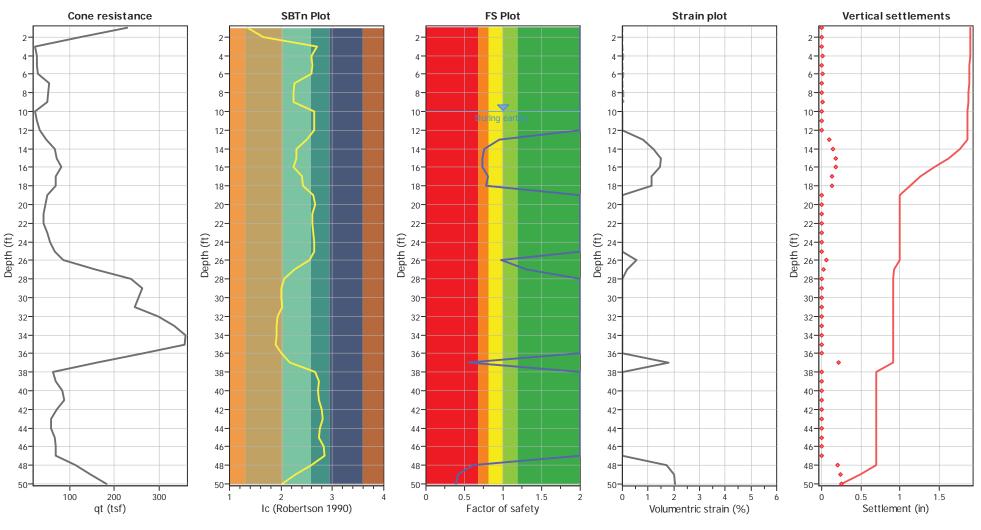

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:34 PM


Abbreviations

q _t :	Total cone resistance (cone resistance q _c corrected for pore water effects)
I _c :	Soil Behaviour Type Index
FS:	Calculated Factor of Safety against liquefaction
Volumentric strain:	Post-liquefaction volumentric strain

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:34 PM Project file: L:\02 - PROJECTS\2016 Projects\TET 16-101E (4552-0101) Carriage Crest Park Water Capture - Carson\04 Analyses\CPT Liquefaction\Carriage Crest Cliq.clq


CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:35 PM


Abbreviations

q _t :	Total cone resistance (cone resistance q _c corrected for pore water effects)
I _c :	Soil Behaviour Type Index
FS:	Calculated Factor of Safety against liquefaction
Volumentric strain:	Post-liquefaction volumentric strain
	, , , , , , , , , , , , , , , , , , , ,

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:35 PM Project file: L:\02 - PROJECTS\2016 Projects\TET 16-101E (4552-0101) Carriage Crest Park Water Capture - Carson\04 Analyses\CPT Liquefaction\Carriage Crest Cliq.clq

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:37 PM

Abbreviations

qt:	Total cone resistance (cone resistance q _c corrected for pore water effects)
I _c :	Soil Behaviour Type Index
FS:	Calculated Factor of Safety against liquefaction
Volumentric strain:	Post-liquefaction volumentric strain

CLiq v.2.0.6.97 - CPT Liquefaction Assessment Software - Report created on: 11/14/2016, 3:09:37 PM Project file: L:\02 - PROJECTS\2016 Projects\TET 16-101E (4552-0101) Carriage Crest Park Water Capture - Carson\04 Analyses\CPT Liquefaction\Carriage Crest Cliq.clq

Sample No.	Sample Depth (ft)	Groundwater Depth (ft)	Assumed Total Unit Weight above GWT (pcf)	Unit Weight	USCS Classification	Sample Moisture Content (%)	Dry Unit Weight at this depth (pcf)	Liquid Limit	Plastic Limit	Assumed Specific Gravity	Plasticity Index	Total Unit Weight (pcf)	Saturated Moisture Content (%)	Liquidity Index	Approximate Effective Vertical Stress (atm)	Mesri (1996)	Sensitivity from Mitchell and Soga (2005)
B-1 R-4	10	10	120	125	СН	19	109	36	21	2.65	15	129.7	19.5	-0.10	0.57	1.35	-1.05
B-3 R-5	10	10	120	125	СН	20.3	107	48	22	2.65	26	128.7	20.6	-0.05	0.57	1.45	-0.73
B-3 R-7	15	10	120	125	CL	22	105	48	22	2.65	26	128.1	21.7	-0.01	0.72	1.55	-0.23

APPENDIX B: SOIL TESTING REPORT

November 11, 2016

Oliver Galang Tetra Tech 3475 E. Foothill Blvd Pasadena, CA 91107

RE: ANALYTICAL SOIL TESTING REPORT CARRIAGE CREST PARK WATER CAPTURE PROJECT CARSON, CA

Dear Mr. Galang,

Tetra Tech BAS (Tetra Tech) has prepared this letter report to present the results of analytical testing of soil samples collected during drilling operations at the Carriage Crest Park Site. The purpose of the testing was to determine whether material proposed to be excavated during site development would require special handling and/or disposal. The sampling program was developed based our understanding of the previous site (and adjacent site) uses. Sample locations are shown on the attached Project Layout and Boring Location Map. Although there is no known on-site contaminant source, adjacent properties to the east have been utilized as nurseries and one adjacent site to the west (across Figueroa Avenue) was the location of an underground storage tank that could potentially be the source of a petroleum hydrocarbon release.

The adjacent nurseries may have impacted the subject site with pesticides and/or herbicides through surface water run-on, airborne particulate deposition or over-spraying of these chemicals. Because these impacts are primarily associated with near-surfaces impacts and because pesticides and herbicide are not typically highly mobile, only samples from the upper five feet were analyzed initially for these contaminants.

Potential underground storage tank impacts, would by definition occur only at depths greater than the depth at which the tank and/or piping are buried and would be evidenced by the presence of more mobile contaminants such as Total Petroleum Hydrocarbons (TPH) and Volatile Organic Compounds (VOCs). As a result, samples to the entire twenty-foot depth of the borings were analyzed for these compounds.

All samples were collected in accordance with industry standard sample collection protocols and were delivered to Eurofins, Calscience Labs in Garden Grove, California, a State certified analytical testing laboratory. A copy of the laboratory analytical results is attached to this report and are summarized in Table 1 (also attached).

These results identified no detectable levels of herbicides in any of the samples collected. Furthermore, TPH and VOCs were detected in only isolated, relatively random samples at low concentrations. As a result, it does not appear that these compounds are of significant concern. However, it should be noted that during drilling operations at the site, petroleum odors were observed. It is possible that the source of the observed odors were subsurface vapors from the adjacent site that may have migrated beneath the subject site.

Analyses for pesticides identified several samples with concentrations of 4,4'-DDD, 4,4'-DDE and/or 4,4'-DDT exceeding the California Total Threshold Limit Concentration (TTLC), which is used to define a hazardous waste. These exceedances are noted as highlighted cells in Table 1 (attached). No discernable trend in the compound specific impacts was evident across all of the locations and depth intervals. Initially, only samples collected from 1 foot and 5 feet below ground surface were analyzed for these constituents. However, at four of the five locations concentrations of at least one of these compounds exceeded the TTLC at the deepest depth tested (i.e. 5 feet below ground surface – bgs); and at each of these four locations, the concentration of at least one of the compounds increased between the 1-foot and the 5-foot deep samples. Subsequent testing of deeper samples taken at depths of 10 and 15 feet showed a significant drop in concentrations indicating that the impacts are limited to the upper 5 to 8 feet.

Given the fact that these pesticide impacts were identified at all five of the locations sampled, the soil cuttings from these borings within the upper 8 feet should be considered a California Hazardous Waste and managed accordingly. In addition, any soil excavated as part of any construction activities at the subject site should be tested for pesticides (at a minimum) in accordance with the waste profiling and in conformance with the acceptance criteria of the licensed disposal facility identified for the project.

Should you have any questions, feel free to contact the undersigned at (909) 860-7777.

Sincerely,

Greg Acosta, PE Vice President, Environmental Services

Attachments: Project Layout and Boring Location Map Table 1 – Soil Analytical Results Attachment A – Laboratory Analytical Reports

Drawing References: Google Earth Pro (2016)

1360 Valley Vista Drive, Diamond Bar, CA 91765 TEL 909.860.7777 FAX 909.860.8017 Project Layout and Boring Location Map

Carriage Crest Park Water Capture Carson, California

JOB NO	TET 16-101E
DATE	October 2016
DRAWN BY	YLI
	Figure 2

TABLE 1 SOIL ANALYTICAL RESULTS **CARRIAGE CREST SITE CARSON, CALIFORNIA**

				Pesticides			VC	Cs
Boring	Depth	Date	4,4'-DDD	4,4'-DDE	4,4'-DDT	трн-д	Benzene	Xylenes
				(ug/Kg)		(mg/Kg)	(ug	′Kg)
	1'	9/27/16	2,600	20,000	780	ND	NA	NA
	5'	9/27/16	6,200	7,500	2,500	ND	ND	ND
B-1	10'	9/27/16	ND	ND	ND	ND	ND	ND
	15'	9/27/16	ND	ND	ND	ND	ND	ND
	20'	9/27/16	NA	NA	NA	ND	ND	ND
	1'	9/27/16	16	24	ND	ND	NA	NA
	5'	9/27/16	1,600	3,200	390	1.8	ND	ND
B-2	10'	9/27/16	NA	NA	NA	330	ND	ND
	15'	9/27/16	NA	NA	NA	ND	ND	ND
	20'	9/27/16	NA	NA	NA	ND	ND	ND
	1'	9/28/16	ND	3,700	ND	ND	NA	NA
	5'	9/28/16	830	250	1,100	ND	ND	ND
B-3	10'	9/28/16	8.0	8.0	ND	ND	ND	ND
	15'	9/28/16	ND	ND	ND	ND	ND	ND
	20'	9/28/16	NA	NA	NA	ND	ND	ND
	1'	9/28/16	400	3,200	1,400	ND	NA	NA
	5'	9/28/16	ND	12	ND	ND	1.1	ND
B-4	10'	9/28/16	ND	ND	ND	290	ND	ND
	15'	9/28/16	ND	ND	ND	170	ND	49
	20'	9/28/16	NA	NA	NA	ND	ND	ND
	1'	9/28/16	ND	ND	ND	ND	NA	NA
	5'	9/28/16	1,500	2,700	320	ND	ND	ND
B-5	10'	9/28/16	ND	ND	ND	ND	ND	ND
	15'	9/28/16	ND	ND	ND	ND	ND	ND
	20'	9/28/16	NA	NA	NA	ND	ND	ND
		TTLC	1,000	1,000	1,000			
		STLC	100	100	100			
		TCLP					500	

NOTES:

mg/kg = Milligrams per kilogram

ug/kg = Micrograms per kilogram

9.3 ND

= Concentration exceeds the California TTLC level. = Analyte not detected at or above the laboratory detection limit

- NA
 - = Not Analyzed (i.e. compound was not anaylized for in the indicated sample)
 - TTLC = California Total Threshold Limit Concentration

STLC = California Soluble Threshold Limit Concentration

TCLP = USEPA Toxicity Characteristic Leaching Potential

No Herbicides were detected above laboratory detection limits in any of the samples analyzed.

No Pesticides were detected other than those listed. All others were not detected above the laboratory detection limit.

No VOCs were detected other than those listed. All others were not detected above the laboratory detection limit.

Calscience

WORK ORDER NUMBER: 16-09-2276

The difference is service

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Tetra Tech, Inc. Client Project Name: Carriage Crest Park Attention: Fernando Cuenca 1360 Valley Vista Drive Diamond Bar, CA 91765-1111

Vikas Patel

Approved for release on 10/17/2016 by: Vikas Patel Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🔅 eurofins

Client Project Name:

Calscience

Carriage Crest Park

Contents

Work Orde	er Number: 16-09-2276	
1	Work Order Narrative.	3
2	Sample Summary.	4
3	Detections Summary	5
4	Client Sample Data.4.1 EPA 8015B (M) TPH Gasoline (Solid).4.2 EPA 8081A Organochlorine Pesticides (Solid).4.3 EPA 8151A Chlorinated Herbicides (Solid).4.4 EPA 8260B BTEX + Oxygenates (Aqueous).4.5 EPA 8260B BTEX + Oxygenates Prep 5035 (Solid).	7 7 12 25 31 33
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	56 56 60
6	Sample Analysis Summary	69
7	Glossary of Terms and Qualifiers.	70
8	Chain-of-Custody/Sample Receipt Form	71

Work Order: 16-09-2276

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/30/16. They were assigned to Work Order 16-09-2276.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Return to Contents

Calscience

Client: Tetra Tech, Inc.	Work Order:	16-09-2276
1360 Valley Vista Drive	Project Name:	Carriage Crest Park
Diamond Bar, CA 91765-1111	PO Number:	
	Date/Time Received:	09/30/16 14:00
	Number of Containers:	92

Attn: Fernando Cuenca

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
B-1,P-1@1'	16-09-2276-1	09/27/16 09:00	1	Solid
B-1,P-2@5'	16-09-2276-2	09/27/16 09:15	1	Solid
B-1,P-3@10'	16-09-2276-3	09/27/16 09:30	1	Solid
B-1,P-4@15'	16-09-2276-4	09/27/16 09:45	1	Solid
B-1,VOC-1@5'	16-09-2276-5	09/27/16 09:15	4	Solid
B-1,VOC-2@10'	16-09-2276-6	09/27/16 09:30	4	Solid
B-1,VOC-3@15'	16-09-2276-7	09/27/16 09:45	4	Solid
B-1,VOC-4@20'	16-09-2276-8	09/27/16 10:20	4	Solid
B-2,P-1@1'	16-09-2276-9	09/27/16 12:00	1	Solid
B-2,P-2@5'	16-09-2276-10	09/27/16 12:20	1	Solid
B-2,P-3@10'	16-09-2276-11	09/27/16 12:35	1	Solid
B-2,P-4@15'	16-09-2276-12	09/27/16 13:15	1	Solid
B-2,VOC-1@5'	16-09-2276-13	09/27/16 12:20	1	Solid
B-2,VOC-2@10'	16-09-2276-14	09/27/16 12:35	1	Solid
B-2,VOC-3@15'	16-09-2276-15	09/27/16 13:15	1	Solid
B-2,VOC-4@20'	16-09-2276-16	09/27/16 13:45	1	Solid
B-3,P-1@1'	16-09-2276-17	09/28/16 07:15	1	Solid
B-3,P-2@5'	16-09-2276-18	09/28/16 07:30	1	Solid
B-3,P-3@10'	16-09-2276-19	09/28/16 08:00	1	Solid
B-3,P-4@15'	16-09-2276-20	09/28/16 08:30	1	Solid
B-3,VOC-1@5'	16-09-2276-21	09/28/16 07:30	4	Solid
B-3,VOC-2@10'	16-09-2276-22	09/28/16 08:00	4	Solid
B-3,VOC-3@15'	16-09-2276-23	09/28/16 08:30	4	Solid
B-3,VOC-4@20'	16-09-2276-24	09/28/16 09:00	4	Solid
B-4,P-1@1'	16-09-2276-25	09/28/16 11:00	1	Solid
B-4,P-2@5'	16-09-2276-26	09/28/16 11:20	1	Solid
B-4,P-3@10'	16-09-2276-27	09/28/16 11:40	1	Solid
B-4,P-4@15'	16-09-2276-28	09/28/16 12:10	1	Solid
B-4,VOC-1@5'	16-09-2276-29	09/28/16 11:20	4	Solid
B-4,VOC-2@10'	16-09-2276-30	09/28/16 11:40	4	Solid
B-4,VOC-3@15'	16-09-2276-31	09/28/16 12:10	4	Solid
B-4,VOC-4@20'	16-09-2276-32	09/28/16 12:30	4	Solid
B-5,P-1@1'	16-09-2276-33	09/28/16 13:10	1	Solid
B-5,P-2@5'	16-09-2276-34	09/28/16 13:30	1	Solid
B-5,P-3@10'	16-09-2276-35	09/28/16 13:45	1	Solid
B-5,P-4@15'	16-09-2276-36	09/28/16 14:10	1	Solid
B-5,VOC-1@5'	16-09-2276-37	09/28/16 13:30	4	Solid
B-5,VOC-2@10'	16-09-2276-38	09/28/16 13:45	4	Solid
B-5,VOC-3@15'	16-09-2276-39	09/28/16 14:10	4	Solid
B-5,VOC-4@20'	16-09-2276-40	09/28/16 14:45	4	Solid
ТВ	16-09-2276-41	09/28/16 00:00	4	Aqueous

Client:	Tetra Tech, Inc. 1360 Valley Vista Drive Diamond Bar, CA 91765	5-1111		Work Order: Project Name: Received:		16-09-2276 Carriage Crest Park 09/30/16	
Attn:	Fernando Cuenca						Page 1 of 2
Client S	ampleID						
<u>Anal</u>	<u>yte</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	Method	Extraction
B-1,P-1@	@1' (16-09-2276-1)						
4,4'-DDD		2600		2500	ug/kg	EPA 8081A	EPA 3545
4,4'-DDE		20000		2500	ug/kg	EPA 8081A	EPA 3545
4,4'-[TDC	780		250	ug/kg	EPA 8081A	EPA 3545
B-1,P-2@	25' (16-09-2276-2)						
4,4'-[ססכ	6200		1000	ug/kg	EPA 8081A	EPA 3545
4,4'-[DDE	7500		1000	ug/kg	EPA 8081A	EPA 3545
4,4'-[TDC	2500		1000	ug/kg	EPA 8081A	EPA 3545
B-2,P-1@	@1' (16-09-2276-9)						
4,4'-[ססכ	16		5.0	ug/kg	EPA 8081A	EPA 3545
4,4'-DDE		24		5.0	ug/kg	EPA 8081A	EPA 3545
B-2,P-2@5' (16-09-2276-10)							
TPH as Gasoline		1.8	HD	0.50	mg/kg	EPA 8015B (M)	EPA 5030C
4,4'-[ססכ	1600		250	ug/kg	EPA 8081A	EPA 3545
4,4'-DDE		3200		2500	ug/kg	EPA 8081A	EPA 3545
4,4'-DDT		390		50	ug/kg	EPA 8081A	EPA 3545
	@10' (16-09-2276-11)	330					
	TPH as Gasoline		HD	19	mg/kg	EPA 8015B (M)	EPA 5030C
	@1' (16-09-2276-17)						
4,4'-[DDE	3700		2500	ug/kg	EPA 8081A	EPA 3545
	25' (16-09-2276-18)						
4,4'-[ססכ	830		250	ug/kg	EPA 8081A	EPA 3545
4,4'-[DDE	250		50	ug/kg	EPA 8081A	EPA 3545
4,4'-DDT		1100		250	ug/kg	EPA 8081A	EPA 3545
B-4,P-1@1' (16-09-2276-25)							
4,4'-[400		250	ug/kg	EPA 8081A	EPA 3545
4,4'-[3200 1400		2500	ug/kg	EPA 8081A	EPA 3545
	4,4'-DDT			250	ug/kg	EPA 8081A	EPA 3545
B-4,P-2@5' (16-09-2276-26)							
4,4'-[12		5.0	ug/kg	EPA 8081A	EPA 3545
	@10' (16-09-2276-27)						
	as Gasoline	290	HD	20	mg/kg	EPA 8015B (M)	EPA 5030C
	@15' (16-09-2276-28)						
TPH as Gasoline		170	HD	4.0	mg/kg	EPA 8015B (M)	EPA 5030C
B-4,VOC-1@5' (16-09-2276-29)							
Benzene		1.1		0.76	ug/kg	EPA 8260B	EPA 5035
B-4,VOC-3@15' (16-09-2276-31)							
o-Xylene		49		37	ug/kg	EPA 8260B	EPA 5035

* MDL is shown

Return to Contents

Client:	Tetra Tech, Inc. 1360 Valley Vista Drive Diamond Bar, CA 91765-1	111		Work Order Project Nar Received:		16-09-2276 Carriage Crest Park 09/30/16	
Attn:	Fernando Cuenca						Page 2 of 2
Client S	ampleID						
<u>Anal</u>	<u>yte</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
B-5,P-2@	@5' (16-09-2276-34)						
4,4'-[DDD	1500		250	ug/kg	EPA 8081A	EPA 3545
4,4'-[DDE	2700		2500	ug/kg	EPA 8081A	EPA 3545
4,4'-[DDT	320		50	ug/kg	EPA 8081A	EPA 3545

Subcontracted analyses, if any, are not included in this summary.

Return to Contents

* MDL is shown

Tetra Tech, Inc.			Date Re	eceived:			09/30/1
1360 Valley Vista Drive		Work Order:					16-09-227
Diamond Bar, CA 91765-1111		ļ	Prepara	tion:			EPA 50300
		ļ	Method:	:		E	PA 8015B (N
		ļ	Units:				mg/k
Project: Carriage Crest Park						Pa	ge 1 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1,P-1@1'	16-09-2276-1-A	09/27/16 09:00	Solid	GC 1	10/04/16	10/04/16 23:49	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.48	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		89		42-126			
B-1,P-2@5'	16-09-2276-2-A	09/27/16 09:15	Solid	GC 1	10/04/16	10/05/16 00:25	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.52	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		94		42-126			
B-1,P-3@10'	16-09-2276-3-A	09/27/16 09:30	Solid	GC 1	10/04/16	10/05/16 19:58	161004L050
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.48	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID							
		89		42-126			
B-1,P-4@15'	16-09-2276-4-A	89 09/27/16 09:45	Solid	42-126 GC 1	10/04/16	10/05/16 01:00	161004L046
_	16-09-2276-4-A	09/27/16	Solid			01:00	161004L046 alifiers
Parameter	16-09-2276-4-A	09/27/16 09:45	Solid	GC 1	10/04/16	01:00	
<u>Parameter</u> TPH as Gasoline	16-09-2276-4-A	09/27/16 09:45 <u>Result</u>	Solid	GC 1	10/04/16 DF	01:00	
<u>Parameter</u> TPH as Gasoline <u>Surrogate</u>	16-09-2276-4-A	09/27/16 09:45 <u>Result</u> ND	Solid	GC 1 RL 0.51	10/04/16 <u>DF</u> 1.00	01:00	
<u>Parameter</u> TPH as Gasoline <u>Surrogate</u> 1,4-Bromofluorobenzene - FID	16-09-2276-4-A 16-09-2276-9-A	09/27/16 09:45 <u>Result</u> ND <u>Rec. (%)</u>	Solid	GC 1 <u>RL</u> 0.51 <u>Control Limits</u>	10/04/16 <u>DF</u> 1.00	01:00	<u>alifiers</u>
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-2,P-1@1'		09/27/16 09:45 Result ND <u>Rec. (%)</u> 96 09/27/16 12:00 Result		GC 1 RL 0.51 Control Limits 42-126 GC 1 RL	10/04/16 DF 1.00 Qualifiers 10/04/16 DF	01:00 Qua 10/05/16 01:36	<u>alifiers</u>
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-2,P-1@1' Parameter		09/27/16 09:45 Result ND <u>Rec. (%)</u> 96 09/27/16 12:00		GC 1 RL 0.51 <u>Control Limits</u> 42-126 GC 1	10/04/16 DE 1.00 Qualifiers 10/04/16	01:00 Qua 10/05/16 01:36	<u>alifiers</u> 161004L046
B-1,P-4@15' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-2,P-1@1' Parameter TPH as Gasoline Surrogate		09/27/16 09:45 Result ND <u>Rec. (%)</u> 96 09/27/16 12:00 Result		GC 1 RL 0.51 Control Limits 42-126 GC 1 RL	10/04/16 DF 1.00 Qualifiers 10/04/16 DF	01:00 Qua 10/05/16 01:36	alifiers 161004L046

Calscience

Tetra Tech, Inc.			Date Re	ceived:			09/30/16
1360 Valley Vista Drive			Work O	rder:			16-09-2276
Diamond Bar, CA 91765-1111			Prepara	tion:			EPA 5030C
			Method:	:		E	PA 8015B (M)
			Units:				mg/kg
Project: Carriage Crest Park						Pa	ge 2 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2,P-2@5'	16-09-2276-10-A	09/27/16 12:20	Solid	GC 1	10/04/16	10/05/16 02:11	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		1.8		0.50	1.00	HD	
Surrogate 1,4-Bromofluorobenzene - FID		<u>Rec. (%)</u> 96		<u>Control Limits</u> 42-126	<u>Qualifiers</u>		
B-2,P-3@10'	16-09-2276-11-A	09/27/16 12:35	Solid	GC 1	10/04/16	10/06/16 18:46	161006L049
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		330		19	38.9	HD	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		146		42-126	2,7		
B-2,P-4@15'	16-09-2276-12-A	09/27/16	Solid	GC 1	10/04/16	10/05/16 02:47	161004L046
		13:15				02.47	
Parameter		Result		RL	DE		alifiers
Parameter TPH as Gasoline				<u>RL</u> 0.51	<u>DF</u> 1.00		<u>alifiers</u>
		Result					alifiers
TPH as Gasoline		<u>Result</u> ND		0.51	1.00		lifiers
TPH as Gasoline Surrogate	16-09-2276-17-A	<u>Result</u> ND <u>Rec. (%)</u>	Solid	0.51 Control Limits	1.00		alifiers 161004L046
TPH as Gasoline <u>Surrogate</u> 1,4-Bromofluorobenzene - FID	16-09-2276-17-A	Result ND <u>Rec. (%)</u> 101 09/28/16	Solid	0.51 <u>Control Limits</u> 42-126	1.00 <u>Qualifiers</u>	Qua 10/05/16 03:23	
TPH as Gasoline <u>Surrogate</u> 1,4-Bromofluorobenzene - FID B-3,P-1@1'	16-09-2276-17-A	Result ND <u>Rec. (%)</u> 101 09/28/16 07:15	Solid	0.51 <u>Control Limits</u> 42-126 GC 1	1.00 Qualifiers 10/04/16	Qua 10/05/16 03:23	161004L046
TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-3,P-1@1' Parameter	16-09-2276-17-A	Result ND Rec. (%) 101 09/28/16 07:15 Result	Solid	0.51 <u>Control Limits</u> 42-126 <u>GC 1</u> <u>RL</u>	1.00 Qualifiers 10/04/16 DF	Qua 10/05/16 03:23	161004L046
TPH as Gasoline <u>Surrogate</u> 1,4-Bromofluorobenzene - FID B-3,P-1@1' Parameter TPH as Gasoline	16-09-2276-17-A	Result ND Rec. (%) 101 09/28/16 07:15 Result ND	Solid	0.51 <u>Control Limits</u> 42-126 <u>GC 1</u> <u>RL</u> 0.48	1.00 Qualifiers 10/04/16 DE 1.00	Qua 10/05/16 03:23	161004L046
TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-3,P-1@1' Parameter TPH as Gasoline Surrogate	16-09-2276-17-A 16-09-2276-18-A	Result ND Rec. (%) 101 09/28/16 07:15 Result ND Rec. (%)	Solid	0.51 Control Limits 42-126 GC 1 RL 0.48 Control Limits	1.00 Qualifiers 10/04/16 DE 1.00	Qua 10/05/16 03:23	161004L046
TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-3,P-1@1' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID		Result ND <u>Rec. (%)</u> 101 09/28/16 07:15 Result ND <u>Rec. (%)</u> 92 09/28/16		0.51 Control Limits 42-126 GC 1 RL 0.48 Control Limits 42-126	1.00 Qualifiers 10/04/16 DF 1.00 Qualifiers	Qua 10/05/16 03:23 Qua 10/05/16 03:58	161004L046 alifiers
TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-3,P-1@1' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-3,P-2@5'		Result ND Rec. (%) 101 09/28/16 07:15 Result ND Rec. (%) 92 09/28/16 07:30		0.51 Control Limits 42-126 GC 1 RL 0.48 Control Limits 42-126 GC 1	1.00 Qualifiers 10/04/16 DF 1.00 Qualifiers 10/04/16	Qua 10/05/16 03:23 Qua 10/05/16 03:58	161004L046
TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-3,P-1@1' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-3,P-2@5' Parameter		Result ND Rec. (%) 101 09/28/16 07:15 Result ND Rec. (%) 92 09/28/16 07:30 Result		0.51 Control Limits 42-126 GC 1 RL 0.48 Control Limits 42-126 GC 1 RL	1.00 Qualifiers 10/04/16 DF 1.00 Qualifiers 10/04/16 DF	Qua 10/05/16 03:23 Qua 10/05/16 03:58	161004L046

Calscience

Tetra Tech, Inc.			Date Re	eceived:			09/30/16
1360 Valley Vista Drive		,	Work O	rder:			16-09-2276
Diamond Bar, CA 91765-1111			Prepara	tion:			EPA 50300
			Method			E	PA 8015B (M)
			Units:				mg/kg
Project: Carriage Crest Park						Pa	ige 3 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3,P-3@10'	16-09-2276-19-A	09/28/16 08:00	Solid	GC 1	10/04/16	10/05/16 05:45	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.50	1.00		
Surrogate 1,4-Bromofluorobenzene - FID		<u>Rec. (%)</u> 93		<u>Control Limits</u> 42-126	Qualifiers		
B-3,P-4@15'	16-09-2276-20-A	09/28/16 08:30	Solid	GC 1	10/04/16	10/05/16 06:20	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.52	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		99		42-126			
B-4,P-1@1'	16-09-2276-25-A	09/28/16 11:00	Solid	GC 1	10/04/16	10/05/16 06:56	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.48	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		92		42-126			
B-4,P-2@5'	16-09-2276-26-A	09/28/16 11:20	Solid	GC 1	10/04/16	10/05/16 07:31	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.49	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		94		42-126			
B-4,P-3@10'	16-09-2276-27-A	09/28/16 11:40	Solid	GC 1	10/04/16	10/06/16 19:58	161006L049
D-4,F-3@10							
Parameter		Result		<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
		<u>Result</u> 290		<u>RL</u> 20	<u>DF</u> 39.2	<u>Qua</u> HD	alifiers
Parameter							<u>alifiers</u>

Tetra Tech, Inc.			Date Re	eceived:			09/30/16
1360 Valley Vista Drive		,	Work O	rder:			16-09-2276
Diamond Bar, CA 91765-1111			Prepara	ition:			EPA 5030C
,			Method:	:		E	PA 8015B (M)
			Units:				mg/kg
Project: Carriage Crest Park						Pa	age 4 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4,P-4@15'	16-09-2276-28-A	09/28/16 12:10	Solid	GC 1	10/04/16	10/06/16 19:22	161006L049
Parameter		Result		RL	DE	Qua	alifiers
TPH as Gasoline		170		4.0	7.92	HD	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		225		42-126	2,7		
B-5,P-1@1'	16-09-2276-33-A	09/28/16 13:10	Solid	GC 1	10/04/16	10/05/16 08:07	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.53	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		93		42-126			
B-5,P-2@5'	16-09-2276-34-A	09/28/16 13:30	Solid	GC 1	10/04/16	10/05/16 20:34	161004L050
B-5,P-2@5' Parameter	16-09-2276-34-A		Solid	GC 1 RL	10/04/16 	20:34	161004L050 alifiers
	16-09-2276-34-A	13:30	Solid			20:34	
Parameter	16-09-2276-34-A	13:30 <u>Result</u>	Solid	RL	DF	20:34	
Parameter TPH as Gasoline	16-09-2276-34-A	13:30 <u>Result</u> ND	Solid	<u>RL</u> 0.50	<u>DF</u> 1.00	20:34	
Parameter TPH as Gasoline Surrogate	16-09-2276-34-A 16-09-2276-35-A	13:30 <u>Result</u> ND <u>Rec. (%)</u>	Solid	RL 0.50 Control Limits	<u>DF</u> 1.00	20:34	
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID		13:30 <u>Result</u> ND <u>Rec. (%)</u> 86 09/28/16		RL 0.50 <u>Control Limits</u> 42-126	<u>DF</u> 1.00 <u>Qualifiers</u>	20:34 Qua 10/05/16 21:10	alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10'		13:30 <u>Result</u> ND <u>Rec. (%)</u> 86 09/28/16 13:45		RL 0.50 Control Limits 42-126 GC 1	DE 1.00 Qualifiers 10/04/16	20:34 Qua 10/05/16 21:10	alifiers 161004L050
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10' Parameter TPH as Gasoline		13:30 <u>Result</u> ND <u>Rec. (%)</u> 86 09/28/16 13:45 <u>Result</u> ND		RL 0.50 Control Limits 42-126 GC 1 RL 0.51	DE 1.00 Qualifiers 10/04/16 DE 1.00	20:34 Qua 10/05/16 21:10	alifiers 161004L050
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10' Parameter		13:30 <u>Result</u> ND <u>Rec. (%)</u> 86 09/28/16 13:45 <u>Result</u>		RL 0.50 Control Limits 42-126 GC 1 RL	DE 1.00 Qualifiers 10/04/16 DE	20:34 Qua 10/05/16 21:10	alifiers 161004L050
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10' Parameter TPH as Gasoline Surrogate		13:30 <u>Result</u> ND <u>Rec. (%)</u> 86 09/28/16 13:45 <u>Result</u> ND <u>Rec. (%)</u>		RL 0.50 Control Limits 42-126 GC 1 RL 0.51 Control Limits	DE 1.00 Qualifiers 10/04/16 DE 1.00	20:34 Qua 10/05/16 21:10	alifiers 161004L050
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	16-09-2276-35-A	13:30 <u>Result</u> ND <u>Rec. (%)</u> 86 09/28/16 13:45 <u>Result</u> ND <u>Rec. (%)</u> 95 09/28/16	Solid	RL 0.50 Control Limits 42-126 GC 1 RL 0.51 Control Limits 42-126	DF 1.00 Qualifiers 10/04/16 DF 1.00 Qualifiers	20:34 Qua 10/05/16 21:10 Qua 10/05/16 21:45	alifiers 161004L050 alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-4@15'	16-09-2276-35-A	13:30 Result ND Rec. (%) 86 09/28/16 13:45 Result ND Result ND Result ND Rec. (%) 95 09/28/16 14:10	Solid	RL 0.50 Control Limits 42-126 GC 1 RL 0.51 Control Limits 42-126	DE 1.00 Qualifiers 10/04/16 DE 1.00 Qualifiers 10/04/16	20:34 Qua 10/05/16 21:10 Qua 10/05/16 21:45	alifiers 161004L050 alifiers 161004L050
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-4@15' Parameter	16-09-2276-35-A	13:30 Result ND Rec. (%) 86 09/28/16 13:45 Result ND Rec. (%) 95 09/28/16 14:10 Result	Solid	RL 0.50 Control Limits 42-126 GC 1 RL 0.51 Control Limits 42-126 GC 1 RL 0.51 Control Limits 42-126 GC 1 RL 0.51	DE 1.00 Qualifiers 10/04/16 DE 1.00 Qualifiers 10/04/16 DE	20:34 Qua 10/05/16 21:10 Qua 10/05/16 21:45	alifiers 161004L050 alifiers 161004L050
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-3@10' Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID B-5,P-4@15' Parameter TPH as Gasoline	16-09-2276-35-A	13:30 <u>Result</u> ND <u>Rec. (%)</u> 86 09/28/16 13:45 <u>Result</u> ND <u>Rec. (%)</u> 95 09/28/16 14:10 <u>Result</u> ND	Solid	RL 0.50 Control Limits 42-126 GC 1 RL 0.51 Control Limits 42-126 GC 1 RL 0.51 Control Limits 42-126 GC 1 GC 1 GL 1 August 1 August 1 August 1 August 1 August 1 August 1	DE 1.00 Qualifiers 10/04/16 DE 1.00 Qualifiers 10/04/16 DE 1.00	20:34 Qua 10/05/16 21:10 Qua 10/05/16 21:45	alifiers 161004L050 alifiers 161004L050

Return to Contents

Tetra Tech, Inc.			Date Re	ceived:			09/30/16
1360 Valley Vista Drive			Work O	rder:			16-09-2276
Diamond Bar, CA 91765-1111			Prepara	tion:			EPA 5030C
			Method:			E	PA 8015B (M)
			Units:				mg/kg
Project: Carriage Crest Park						Pa	ige 5 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-571-3312	N/A	Solid	GC 1	10/04/16	10/04/16 20:15	161004L046
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		91		42-126			
Method Blank	099-14-571-3313	N/A	Solid	GC 1	10/03/16	10/05/16 14:02	161004L050
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		88		42-126			
Method Blank	099-14-571-3314	N/A	Solid	GC 1	10/06/16	10/06/16 12:50	161006L049
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		4.0	8.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		82		42-126			

QC Batch ID

161003L02A

4640021.024

Qualifiers

Date/Time

Analyzed

Date Prepared

10/03/16

Client Sample Number

B-1,P-1@1'

Aldrin

Endrin

Lab Sample Number

16-09-2276-1-A

Tatro Tach Inc	Date Received:	09/30/16
Tetra Tech, Inc.	Dale Received.	09/30/10
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 1 of 13

Matrix

Solid

Instrument

GC 41

10/05/16 17:07 09/27/16 09:00 Parameter Result <u>RL</u> <u>DF</u> ND 50 10.0 Alpha-BHC ND 100 10.0 Beta-BHC ND 50 10.0 Chlordane ND 500 10.0 Delta-BHC ND 100 10.0 Dieldrin ND 50 10.0 Endosulfan I ND 50 10.0 Endosulfan II ND 50 10.0 Endosulfan Sulfate ND 50 10.0 ND 50 10.0 Endrin Aldehyde ND 50 10.0 Endrin Ketone ND 50 10.0 Gamma-BHC ND 50 10.0 Heptachlor ND 50 10.0 Heptachlor Epoxide ND 100 10.0 ND 50 10.0 Methoxychlor

Date/Time

Collected

2,4,5,6-Tetrachloro-m-Xylene	110	25-145		
Decachlorobiphenyl	104	24-168		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
Toxaphene	ND	1000	10.0	

B-1,P-1@1 [.]	16-09-2276-1-A	09/27/16	Solid	GC 41	10/03/16	10/05/16 18:54	161003L02A
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
4,4'-DDT		780		250	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		204		24-168	1,2,7		
2,4,5,6-Tetrachloro-m-Xylene		156		25-145	1,2,7		

2,4,5,6-Tetrachloro-m-Xylene

Tetra Tech, Inc.			Date Re	eceived:			09/30/16
1360 Valley Vista Drive			Work O	rder:			16-09-2276
Diamond Bar, CA 91765-1111			Prepara				EPA 3545
			Method				EPA 8081A
			Units:				ug/kg
Project: Carriage Crest Park			Offica.			De	age 2 of 13
						Fd	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1,P-1@1'	16-09-2276-1-A	09/27/16 09:00	Solid	GC 41	10/03/16	10/06/16 13:57	161003L02A
Parameter		<u>Result</u>		<u>RL</u>	DE	Qua	alifiers
4,4'-DDD		2600		2500	500		
4,4'-DDE		20000		2500	500		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		192		24-168	1,2,7		
2,4,5,6-Tetrachloro-m-Xylene		346		25-145	1,2,7		
B-1,P-2@5'	16-09-2276-2-A	09/27/16 09:15	Solid	GC 41	10/03/16	10/05/16 17:22	161003L02A
Parameter		Result		RL	DF		alifiers
Aldrin		ND		50	10.0		
Alpha-BHC		ND		100	10.0		
Beta-BHC		ND		50	10.0		
Chlordane		ND		500	10.0		
Delta-BHC		ND		100	10.0		
Dieldrin		ND		50	10.0		
Endosulfan I		ND		50	10.0		
Endosulfan II		ND		50	10.0		
Endosulfan Sulfate		ND		50	10.0		
Endrin		ND		50	10.0		
Endrin Aldehyde		ND		50	10.0		
Endrin Ketone		ND		50	10.0		
Gamma-BHC		ND		50	10.0		
Heptachlor		ND		50	10.0		
Heptachlor Epoxide		ND		100	10.0		
Methoxychlor		ND		50	10.0		
Toxaphene		ND		1000	10.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		67		24-168			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

25-145

76

Tetra Tech, Inc.			Date Red	ceived:			09/30/16	
1360 Valley Vista Drive			Work Or	der:			16-09-2276	
Diamond Bar, CA 91765-1111		Preparation:				EPA 3545		
	Method:						EPA 8081A	
	Units:						ug/kg	
Project: Carriage Crest Park						Pa	ige 3 of 13	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-1,P-2@5'	16-09-2276-2-A	09/27/16 09:15	Solid	GC 41	10/03/16	10/07/16 12:08	161003L02A	
Parameter		Result		RL	DF	Qua	alifiers	
4,4'-DDD		6200		1000	200			
4,4'-DDE		7500		1000	200			
4,4'-DDT		2500		1000	200			
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>			
Decachlorobiphenyl		100		24-168				
2,4,5,6-Tetrachloro-m-Xylene		58		25-145				

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 4 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2,P-1@1'	16-09-2276-9-A	09/27/16 12:00	Solid	GC 44	10/03/16	10/04/16 16:50	161003L02A
Parameter		<u>Result</u>	R	<u>L</u>	DF	Qua	lifiers
Aldrin		ND	5	.0	1.00		
Alpha-BHC		ND	1	0	1.00		
Beta-BHC		ND	5	.0	1.00		
Chlordane		ND	5	0	1.00		
4,4'-DDD		16	5	.0	1.00		
4,4'-DDE		24	5	.0	1.00		
4,4'-DDT		ND	5	.0	1.00		
Delta-BHC		ND	1	0	1.00		
Dieldrin		ND	5	.0	1.00		
Endosulfan I		ND	5	.0	1.00		
Endosulfan II		ND	5	.0	1.00		
Endosulfan Sulfate		ND	5	.0	1.00		
Endrin		ND	5	.0	1.00		
Endrin Aldehyde		ND	5	.0	1.00		
Endrin Ketone		ND	5	.0	1.00		
Gamma-BHC		ND	5	.0	1.00		
Heptachlor		ND	5	.0	1.00		
Heptachlor Epoxide		ND	1	0	1.00		
Methoxychlor		ND	5	.0	1.00		
Toxaphene		ND	1	00	1.00		
Surrogate		<u>Rec. (%)</u>	C	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		102	2	4-168			
2,4,5,6-Tetrachloro-m-Xylene		93	2	5-145			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 5 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2,P-2@5'	16-09-2276-10-A	09/27/16 12:20	Solid	GC 41	10/03/16	10/05/16 17:37	161003L02A
Parameter		<u>Result</u>	ŀ	RL	DF	Qua	lifiers
Aldrin		ND	ţ	50	10.0		
Alpha-BHC		ND		100	10.0		
Beta-BHC		ND	Ę	50	10.0		
Chlordane		ND	Ę	500	10.0		
4,4'-DDT		390	Ę	50	10.0		
Delta-BHC		ND		100	10.0		
Dieldrin		ND	Ę	50	10.0		
Endosulfan I		ND	Ę	50	10.0		
Endosulfan II		ND	Ę	50	10.0		
Endosulfan Sulfate		ND	Ę	50	10.0		
Endrin		ND	Ę	50	10.0		
Endrin Aldehyde		ND	Ę	50	10.0		
Endrin Ketone		ND	Ę	50	10.0		
Gamma-BHC		ND	Ę	50	10.0		
Heptachlor		ND	Ę	50	10.0		
Heptachlor Epoxide		ND		100	10.0		
Methoxychlor		ND	Ę	50	10.0		
Toxaphene		ND		1000	10.0		
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		113		24-168			
2,4,5,6-Tetrachloro-m-Xylene		102	2	25-145			

B-2,P-2@5'	16-09-2276-10-A	09/27/16 12:20	Solid	GC 41	10/03/16	10/05/16 19:24	161003L02A
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	lifiers
4,4'-DDD		1600		250	50.0		
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		92		24-168			
2,4,5,6-Tetrachloro-m-Xylene		117		25-145			

Calscience

Analytical Report

Tetra Tech, Inc.			Date Re	ceived:			09/30/16	
1360 Valley Vista Drive			Work Or	rder:		16-09-2276		
Diamond Bar, CA 91765-1111			Prepara	tion:		EPA 3545		
			Method:				EPA 8081A	
			Units:				ug/kg	
Project: Carriage Crest Park						Pa	age 6 of 13	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-2,P-2@5'	16-09-2276-10-A	09/27/16 12:20	Solid	GC 41	10/03/16	10/06/16 14:27	161003L02A	
Parameter		Result		RL	DF	Qua	alifiers	
4,4'-DDE		3200		2500	500			
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>			
Decachlorobiphenyl		155		24-168				
2,4,5,6-Tetrachloro-m-Xylene		146		25-145	1,2,7			
B-3,P-1@1'	16-09-2276-17-A	09/28/16 07:15	Solid	GC 41	10/03/16	10/05/16 17:52	161003L02A	
Parameter		Result		RL	DF	Qua	alifiers	
Aldrin		ND		50	10.0			
Alpha-BHC		ND		100	10.0			
Beta-BHC		ND		50	10.0			
Chlordane		ND		500	10.0			
4,4'-DDD		ND		50	10.0			
4,4'-DDT		ND		50	10.0			
Delta-BHC		ND		100	10.0			
Dieldrin		ND		50	10.0			
Endosulfan I		ND		50	10.0			
Endosulfan II		ND		50	10.0			
Endosulfan Sulfate		ND		50	10.0			
Endrin		ND		50	10.0			
Endrin Aldehyde		ND		50	10.0			
Endrin Ketone		ND		50	10.0			
Gamma-BHC		ND		50	10.0			
Heptachlor		ND		50	10.0			
Heptachlor Epoxide		ND		100	10.0			
Methoxychlor		ND		50	10.0			
Toxaphene		ND		1000	10.0			
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>			
Decachlorobiphenyl		91		24-168				

Tetra Tech, Inc.			Date Re				09/30/16
1360 Valley Vista Drive			Work O				16-09-2276
Diamond Bar, CA 91765-1111			Prepara		EPA 3545		
			Method:				EPA 8081A
			Units:				ug/kg
Project: Carriage Crest Park						Pa	ige 7 of 13
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3,P-1@1'	16-09-2276-17-A	09/28/16 07:15	Solid	GC 41	10/03/16	10/06/16 14:42	161003L02A
Parameter		Result		RL	DF	Qua	alifiers
4,4'-DDE		3700		2500	500		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		146		24-168			
2,4,5,6-Tetrachloro-m-Xylene		186		25-145	1,2,7		
B-3,P-2@5'	16-09-2276-18-A	09/28/16 07:30	Solid	GC 44	10/03/16	10/04/16 13:07	161003L02A
Parameter		Result		RL	DF	Qua	alifiers
Aldrin		ND		5.0	1.00		
Alpha-BHC		ND		10	1.00		
Beta-BHC		ND		5.0	1.00		
Chlordane		ND		50	1.00		
Delta-BHC		ND		10	1.00		
Dieldrin		ND		5.0	1.00		
Endosulfan I		ND		5.0	1.00		
Endosulfan II		ND		5.0	1.00		
Endosulfan Sulfate		ND		5.0	1.00		
Endrin		ND		5.0	1.00		
Endrin Aldehyde		ND		5.0	1.00		
Endrin Ketone		ND		5.0	1.00		
Gamma-BHC		ND		5.0	1.00		
Heptachlor		ND		5.0	1.00		
Heptachlor Epoxide		ND		10	1.00		
Methoxychlor		ND		5.0	1.00		
Toxaphene		ND		100	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		60		24-168			
		00		24-100			

0				
2	IC	CI	on	ce
Ja	13	6	CII	CC

Tetra Tech, Inc.			Date Re	eceived:			09/30/16	
1360 Valley Vista Drive			Work O	rder:			16-09-2276	
Diamond Bar, CA 91765-1111			Prepara		EPA 3545			
			Method:	:			EPA 8081A	
			Units:				ug/kg	
Project: Carriage Crest Park						Pa	age 8 of 13	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-3,P-2@5'	16-09-2276-18-A	09/28/16 07:30	Solid	GC 44	10/03/16	10/04/16 14:07	161003L02A	
Parameter		Result		<u>RL</u> <u>DF</u>		<u>Qualifiers</u>		
4,4'-DDE		250		50	10.0			
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>			
Decachlorobiphenyl		58		24-168				
2,4,5,6-Tetrachloro-m-Xylene		131		25-145				
B-3,P-2@5'	16-09-2276-18-A	09/28/16 07:30	Solid	GC 44	10/03/16	10/04/16 14:22	161003L02A	
Parameter		Result		RL	DF	Qua	alifiers	
4,4'-DDD		830		250	50.0			
4,4'-DDT		1100		250	50.0			
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>			
Decachlorobiphenyl		62		24-168				
2,4,5,6-Tetrachloro-m-Xylene		108		25-145				

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 9 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4,P-1@1'	16-09-2276-25-A	09/28/16 11:00	Solid	GC 41	10/03/16	10/05/16 18:07	161003L02A
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	<u>lifiers</u>
Aldrin		ND		50	10.0		
Alpha-BHC		ND		100	10.0		
Beta-BHC		ND		50	10.0		
Chlordane		ND		500	10.0		
Delta-BHC		ND		100	10.0		
Dieldrin		ND		50	10.0		
Endosulfan I		ND		50	10.0		
Endosulfan II		ND		50	10.0		
Endosulfan Sulfate		ND		50	10.0		
Endrin		ND		50	10.0		
Endrin Aldehyde		ND		50	10.0		
Endrin Ketone		ND		50	10.0		
Gamma-BHC		ND		50	10.0		
Heptachlor		ND		50	10.0		
Heptachlor Epoxide		ND		100	10.0		
Methoxychlor		ND		50	10.0		
Toxaphene		ND		1000	10.0		
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		104		24-168			
2,4,5,6-Tetrachloro-m-Xylene		89		25-145			

B-4,P-1@1'	16-09-2276-25-A	09/28/16 11:00	Solid	GC 41	10/03/16	10/05/16 19:54	161003L02A
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
4,4'-DDD		400		250	50.0		
4,4'-DDT		1400		250	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		101		24-168			
2,4,5,6-Tetrachloro-m-Xylene		94		25-145			

Calscience

Tetra Tech, Inc.			Date Rec	eived:			09/30/16
1360 Valley Vista Drive			Work Ord	ler:			16-09-2276
Diamond Bar, CA 91765-1111			Preparati	on:			EPA 3545
			Method:				EPA 8081A
			Units:				ug/kg
Broiget: Corrigge Creat Bark			Units.	Doc			
Project: Carriage Crest Park						Fay	je 10 of 13
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4,P-1@1'	16-09-2276-25-A	09/28/16 11:00	Solid	GC 41	10/03/16	10/06/16 14:57	161003L02A
Parameter		<u>Result</u>	ļ	RL	DF	Qua	<u>alifiers</u>
4,4'-DDE		3200	:	2500	500		
Surrogate		<u>Rec. (%)</u>	(Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		138	2	24-168			
2,4,5,6-Tetrachloro-m-Xylene		153	2	25-145	1,2,7		
B-4,P-2@5'	16-09-2276-26-A	09/28/16 11:20	Solid	GC 44	10/03/16	10/04/16 17:47	161003L02A
Parameter		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers
Aldrin		ND	ł	5.0	1.00		
Alpha-BHC		ND		10	1.00		
Beta-BHC		ND	ŧ	5.0	1.00		
Chlordane		ND	ŧ	50	1.00		
4,4'-DDD		ND	ł	5.0	1.00		
4,4'-DDE		12	Ę	5.0	1.00		
4,4'-DDT		ND	ŧ	5.0	1.00		
Delta-BHC		ND		10	1.00		
Dieldrin		ND	ŧ	5.0	1.00		
Endosulfan I		ND	ł	5.0	1.00		
Endosulfan II		ND	Į	5.0	1.00		
Endosulfan Sulfate		ND	ŧ	5.0	1.00		
Endrin		ND	ŧ	5.0	1.00		
Endrin Aldehyde		ND	ł	5.0	1.00		
Endrin Ketone		ND	ŧ	5.0	1.00		
Gamma-BHC		ND	ŧ	5.0	1.00		
Heptachlor		ND	ŧ	5.0	1.00		
Heptachlor Epoxide		ND		10	1.00		
Methoxychlor		ND	ŧ	5.0	1.00		
Toxaphene		ND		100	1.00		
Surrogate		<u>Rec. (%)</u>	9	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		94	:	24-168			
2,4,5,6-Tetrachloro-m-Xylene		83		25-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit. Return to Contents

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 11 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5,P-1@1'	16-09-2276-33-A	09/28/16 13:10	Solid	GC 44	10/03/16	10/04/16 18:01	161003L02A
Parameter		<u>Result</u>	Ē	<u>:L</u>	DF	Qua	lifiers
Aldrin		ND	5	.0	1.00		
Alpha-BHC		ND	1	0	1.00		
Beta-BHC		ND	5	.0	1.00		
Chlordane		ND	5	0	1.00		
4,4'-DDD		ND	5	.0	1.00		
4,4'-DDE		ND	5	.0	1.00		
4,4'-DDT		ND	5	.0	1.00		
Delta-BHC		ND	1	0	1.00		
Dieldrin		ND	5	.0	1.00		
Endosulfan I		ND	5	.0	1.00		
Endosulfan II		ND	5	.0	1.00		
Endosulfan Sulfate		ND	5	.0	1.00		
Endrin		ND	5	.0	1.00		
Endrin Aldehyde		ND	5	.0	1.00		
Endrin Ketone		ND	5	.0	1.00		
Gamma-BHC		ND	5	.0	1.00		
Heptachlor		ND	5	.0	1.00		
Heptachlor Epoxide		ND	1	0	1.00		
Methoxychlor		ND	5	.0	1.00		
Toxaphene		ND	1	00	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>	<u>C</u>	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		40	2	4-168			
2,4,5,6-Tetrachloro-m-Xylene		40	2	5-145			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 12 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5,P-2@5'	16-09-2276-34-A	09/28/16 13:30	Solid	GC 41	10/03/16	10/05/16 18:22	161003L02A
Parameter		Result		RL	DF	Qua	lifiers
Aldrin		ND		50	10.0		
Alpha-BHC		ND		100	10.0		
Beta-BHC		ND		50	10.0		
Chlordane		ND		500	10.0		
4,4'-DDT		320		50	10.0		
Delta-BHC		ND		100	10.0		
Dieldrin		ND		50	10.0		
Endosulfan I		ND		50	10.0		
Endosulfan II		ND		50	10.0		
Endosulfan Sulfate		ND		50	10.0		
Endrin		ND		50	10.0		
Endrin Aldehyde		ND		50	10.0		
Endrin Ketone		ND		50	10.0		
Gamma-BHC		ND		50	10.0		
Heptachlor		ND		50	10.0		
Heptachlor Epoxide		ND		100	10.0		
Methoxychlor		ND		50	10.0		
Toxaphene		ND		1000	10.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		104		24-168			
2,4,5,6-Tetrachloro-m-Xylene		89		25-145			

B-5,P-2@5'	16-09-2276-34-A	09/28/16 13:30	Solid	GC 41	10/03/16	10/05/16 20:09	161003L02A
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
4,4'-DDD		1500		250	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		121		24-168			
2,4,5,6-Tetrachloro-m-Xylene		94		25-145			

Calscience

Tetra Tech, Inc.			Date Rec	eived:			09/30/16	
1360 Valley Vista Drive			Work Orc	ler:			16-09-2276	
Diamond Bar, CA 91765-1111			Preparati	on:			EPA 3545	
			Method:				EPA 8081A	
			Units:				ug/kg	
Project: Carriage Crest Park			Ormo.			Par	ge 13 of 13	
Tioject. Gamage creat raik						1 85		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-5,P-2@5'	16-09-2276-34-A	09/28/16 13:30	Solid	GC 41	10/03/16	10/06/16 15:12	161003L02A	
Parameter		<u>Result</u>	ļ	<u>RL</u>	DF	Qua	alifiers	
4,4'-DDE		2700	:	2500	500			
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>			
Decachlorobiphenyl		122	:	24-168				
2,4,5,6-Tetrachloro-m-Xylene		163	:	25-145	1,2,7			
Method Blank	099-12-537-2530	N/A	Solid	GC 44	10/03/16	10/04/16 12:05	161003L02A	
Parameter		Result		RL	DF	Qua	alifiers	
Aldrin		ND	:	5.0	1.00			
Alpha-BHC		ND		10	1.00			
Beta-BHC		ND	:	5.0	1.00			
Chlordane		ND	:	50	1.00			
4,4'-DDD		ND	:	5.0	1.00			
4,4'-DDE		ND	:	5.0	1.00			
4,4'-DDT		ND	:	5.0	1.00			
Delta-BHC		ND		10	1.00			
Dieldrin		ND	:	5.0	1.00			
Endosulfan I		ND	:	5.0	1.00			
Endosulfan II		ND	:	5.0	1.00			
Endosulfan Sulfate		ND	:	5.0	1.00			
Endrin		ND	:	5.0	1.00			
Endrin Aldehyde		ND	:	5.0	1.00			
Endrin Ketone		ND	:	5.0	1.00			
Gamma-BHC		ND	:	5.0	1.00			
Heptachlor		ND	:	5.0	1.00			
Heptachlor Epoxide		ND		10	1.00			
Methoxychlor		ND	:	5.0	1.00			
Toxaphene		ND		100	1.00			
Surrogate		<u>Rec. (%)</u>	<u>!</u>	Control Limits	<u>Qualifiers</u>			
Decachlorobiphenyl		95	:	24-168				
2,4,5,6-Tetrachloro-m-Xylene		97	:	25-145				

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 8151A
	Method:	EPA 8151A
	Units:	ug/kg
Project: Carriage Crest Park		Page 1 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1,P-1@1'	16-09-2276-1-A	09/27/16 09:00	Solid	GC 40	10/01/16	10/10/16 18:28	161001L01
Parameter		Result	_	RL	DF	Qua	lifiers
Dalapon		ND	2	250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND	Ę	50	1.00		
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		112	:	30-130			

B-1,P-2@5'	16-09-2276-2-A	09/27/16 09:15	Solid GC	40 10/01/16	10/10/16 18:51	161001L01
Parameter		<u>Result</u>	<u>RL</u>	DF	Qua	alifiers
Dalapon		ND	250	1.00		
Dicamba		ND	10	1.00		
MCPP		ND	10000	1.00		
MCPA		ND	10000	1.00		
Dichlorprop		ND	100	1.00		
2,4-D		ND	100	1.00		
2,4,5-TP (Silvex)		ND	10	1.00		
2,4,5-T		ND	10	1.00		
2,4-DB		ND	100	1.00		
Dinoseb		ND	50	1.00		
Surrogate		<u>Rec. (%)</u>	Control I	Limits Qualifiers		
2,4-Dichlorophenylacetic acid		97	30-130			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 8151A
	Method:	EPA 8151A
	Units:	ug/kg
Project: Carriage Crest Park		Page 2 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2,P-1@1'	16-09-2276-9-A	09/27/16 12:00	Solid	GC 40	10/01/16	10/10/16 19:14	161001L01
Parameter		Result		RL	DF	Qua	lifiers
Dalapon		ND		250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND		50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
2,4-Dichlorophenylacetic acid		72		30-130			

B-2,P-2@5'	16-09-2276-10-A	09/27/16 12:20	Solid	GC 40	10/01/16	10/10/16 19:38	161001L01
Parameter		Result		RL	DF	Qua	alifiers
Dalapon		ND		250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND		50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		88		30-130			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 8151A
	Method:	EPA 8151A
	Units:	ug/kg
Project: Carriage Crest Park		Page 3 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3,P-1@1'	16-09-2276-17-A	09/28/16 07:15	Solid	GC 40	10/01/16	10/10/16 20:01	161001L01
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Dalapon		ND		250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND		50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		78		30-130			

B-3,P-2@5'	16-09-2276-18-A	09/28/16 07:30	Solid	GC 40	10/01/16	10/10/16 20:24	161001L01
Parameter		<u>Result</u>		RL	DF	Qu	alifiers
Dalapon		ND		250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND		50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		84		30-130			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 8151A
	Method:	EPA 8151A
	Units:	ug/kg
Project: Carriage Crest Park		Page 4 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4,P-1@1'	16-09-2276-25-A	09/28/16 11:00	Solid	GC 40	10/01/16	10/10/16 20:47	161001L01
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Dalapon		ND		250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND		50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		98		30-130			

B-4,P-2@5'	16-09-2276-26-A	09/28/16 11:20	Solid	GC 40	10/01/16	10/10/16 21:10	161001L01
Parameter		<u>Result</u>		RL	DF	<u>Qu</u>	alifiers
Dalapon		ND		250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND		50	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		92		30-130			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 8151A
	Method:	EPA 8151A
	Units:	ug/kg
Project: Carriage Crest Park		Page 5 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5,P-1@1'	16-09-2276-33-A	09/28/16 13:10	Solid	GC 40	10/01/16	10/10/16 21:33	161001L01
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Dalapon		ND		250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND		50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		105		30-130			

B-5,P-2@5'	16-09-2276-34-A	09/28/16 13:30	Solid	GC 40	10/01/16	10/10/16 21:56	161001L01
Parameter		<u>Result</u>		RL	DF	Qu	alifiers
Dalapon		ND	:	250	1.00		
Dicamba		ND		10	1.00		
MCPP		ND		10000	1.00		
MCPA		ND		10000	1.00		
Dichlorprop		ND		100	1.00		
2,4-D		ND		100	1.00		
2,4,5-TP (Silvex)		ND		10	1.00		
2,4,5-T		ND		10	1.00		
2,4-DB		ND		100	1.00		
Dinoseb		ND	:	50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2,4-Dichlorophenylacetic acid		88	:	30-130			

Dinoseb

Tetra Tech, Inc.			Date Reco	eived:			09/30/16
1360 Valley Vista Drive			Work Ord	er:			16-09-2276
Diamond Bar, CA 91765-1111			Preparatio	on:			EPA 8151A
			Method:				EPA 8151A
			Units:				ug/kg
Project: Carriage Crest Park						Ра	ge 6 of 6
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-033-1405	N/A	Solid	GC 40	10/01/16	10/07/16 19:39	161001L01
Parameter		Result	Ē	<u>۲L</u>	DF	Qua	lifiers
<u>Parameter</u> Dalapon		<u>Result</u> ND		<u>RL</u> 250	<u>DF</u> 1.00	Qua	lifiers
			2			Qua	lifiers
Dalapon		ND	2	250	1.00	Qua	lifiers
Dalapon Dicamba		ND ND	2 1 1	250 10	1.00 1.00	Qua	lifiers
Dalapon Dicamba MCPP		ND ND ND	2 1 1 1	250 10 10000	1.00 1.00 1.00	Qua	lifiers
Dalapon Dicamba MCPP MCPA		ND ND ND ND	2 1 1 1 1	250 10 10000 10000	1.00 1.00 1.00 1.00	Qua	lifiers
Dalapon Dicamba MCPP MCPA Dichlorprop		ND ND ND ND ND	2 1 1 1 1 1 1	250 10 10000 10000 100	1.00 1.00 1.00 1.00 1.00	Qua	lifiers
Dalapon Dicamba MCPP MCPA Dichlorprop 2,4-D		ND ND ND ND ND ND	2 1 1 1 1 1 1 1	250 10 10000 10000 100 100	1.00 1.00 1.00 1.00 1.00 1.00	Qua	lifiers

50

1.00

Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
2,4-Dichlorophenylacetic acid	94	30-130	

ND

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: Carriage Crest Park		Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
тв	16-09-2276-41-b	09/28/16 00:00	Aqueous	GC/MS WW	10/04/16	10/04/16 13:17	161004L002
Parameter		<u>Result</u>	RL	-	<u>DF</u>	Qua	<u>lifiers</u>
Benzene		ND	0.5	50	1.00		
Ethylbenzene		ND	1.()	1.00		
Toluene		ND	1.()	1.00		
p/m-Xylene		ND	1.()	1.00		
o-Xylene		ND	1.()	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	1.()	1.00		
Tert-Butyl Alcohol (TBA)		ND	10		1.00		
Diisopropyl Ether (DIPE)		ND	2.0)	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	2.0)	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	2.0)	1.00		
Ethanol		ND	10	0	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		90	80	-120			
Dibromofluoromethane		97	78	-126			
1,2-Dichloroethane-d4		102	75	-135			
Toluene-d8		94	80	-120			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: Carriage Crest Park		Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-001-21504	N/A	Aqueous	GC/MS WW	10/04/16	10/04/16 12:07	161004L002
Parameter		<u>Result</u>	RL		DF	Qua	lifiers
Benzene		ND	0.5	50	1.00		
Ethylbenzene		ND	1.0)	1.00		
Toluene		ND	1.0)	1.00		
p/m-Xylene		ND	1.0)	1.00		
o-Xylene		ND	1.0)	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	1.0)	1.00		
Tert-Butyl Alcohol (TBA)		ND	10		1.00		
Diisopropyl Ether (DIPE)		ND	2.0)	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	2.0)	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	2.0)	1.00		
Ethanol		ND	10	0	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		93	80	-120			
Dibromofluoromethane		97	78	-126			
1,2-Dichloroethane-d4		103	75	-135			
Toluene-d8		94	80	-120			

							1.6			
B-1,VOC-1@5'	16-09-2276-5-D	09/27/16 09:15	Solid	GC/MS QQ	09/27/16	10/05/16 14:51	161005L016			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
Project: Carriage Crest Park						Pa	ge 1 of 23			
			Units:				ug/kg			
		Method:					EPA 8260B			
Diamond Bar, CA 91765-1111			Preparatio	on:		EPA 503				
1360 Valley Vista Drive			Work Ord	er:		16-09-2276				
Tetra Tech, Inc.			Date Received:				09/30/16			

10-09-2270-5-D	09/27/10	30110 GC/M3 QQ	09/2//10	14:51	1010052010
	Result	RL	DF	Qu	alifiers
	ND	0.69	1.00		
	ND	0.69	1.00		
	ND	0.69	1.00		
	ND	1.4	1.00		
	ND	0.69	1.00		
	ND	1.4	1.00		
	ND	14	1.00		
	ND	0.69	1.00		
	ND	0.69	1.00		
	ND	0.69	1.00		
	ND	350	1.00		
	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
	94	80-120			
	95	79-133			
	103	71-155			
	97	80-120			
	10-03-2210-3-D	09:15 <u>Result</u> ND ND ND ND ND ND ND ND ND ND	Result RL ND 0.69 ND 0.69 ND 0.69 ND 0.69 ND 0.69 ND 1.4 ND 0.69 ND 1.4 ND 1.4 ND 1.4 ND 1.4 ND 1.4 ND 0.69 ND 350 V V V V 94 80-120 95 79-133 103 71-155	O9:15 Result RL DE ND 0.69 1.00 ND 1.4 1.00 ND 1.4 1.00 ND 1.4 1.00 ND 1.4 1.00 ND 0.69 1.00 ND 350 1.00 ND 94 80-120 95 79-133 103 103 71-155 1.00	09:15 14:51 Result RL DE Qu ND 0.69 1.00 ND ND 1.4 1.00 ND ND 1.4 1.00 ND ND 1.4 1.00 ND ND 14 1.00 ND ND 0.69 1.00 ND ND 0.69 1.00 ND ND 0.69 1.00 ND ND 0.69 1.00 ND ND 350 1.00 ND ND 350 1.00 ND ND 94 80-120 95 95 79-133 103 71-155

Qualifiers

Parameter

Ethylbenzene

Benzene

Toluene

o-Xylene

Ethanol

Surrogate

Toluene-d8

p/m-Xylene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Dibromofluoromethane

1,2-Dichloroethane-d4

Tert-Amyl-Methyl Ether (TAME)

B-1,VOC-2@10'	16-09-2276-6-D	09/27/16 09:30	Solid	GC/MS QQ	09/27/16	10/05/16 15:19	161005L016		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Project: Carriage Crest Park						Pa	ge 2 of 23		
	Units:						ug/kg		
			Method:				EPA 8260B		
Diamond Bar, CA 91765-1111			Preparatio	on:		EPA 503			
1360 Valley Vista Drive			Work Ord	er:			16-09-2276		
Tetra Tech, Inc.			Date Rece	eived:		09/30/16			

<u>RL</u>

0.69

0.69

0.69

1.4

0.69

1.4

14

0.69

0.69

0.69

350

80-120

79-133

71-155

80-120

Control Limits

DF

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

Result

ND

93

95

101

98

Rec. (%)

Tetra Tech, Inc.			Date Rece	eived:		09/30/			
1360 Valley Vista Drive	alley Vista Drive Work 0			er:		16-09-2276			
Diamond Bar, CA 91765-1111			Preparatio	on:		EPA 503			
	Method:					EPA 8260B			
	Units:						ug/kg		
Project: Carriage Crest Park						Pa	ge 3 of 23		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		

	Number	Collected		Prepared	Analyzed	
B-1,VOC-3@15'	16-09-2276-7-D	09/27/16 09:45	Solid GC/MS QQ	09/27/16	10/05/16 15:48	161005L016
Parameter		Result	RL	DF	Qu	alifiers
Benzene		ND	0.77	1.00		
Ethylbenzene		ND	0.77	1.00		
Toluene		ND	0.77	1.00		
p/m-Xylene		ND	1.5	1.00		
o-Xylene		ND	0.77	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	1.5	1.00		
Tert-Butyl Alcohol (TBA)		ND	15	1.00		
Diisopropyl Ether (DIPE)		ND	0.77	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.77	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.77	1.00		
Ethanol		ND	390	1.00		
Surrogate		<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		95	80-120			
Dibromofluoromethane		97	79-133			
1,2-Dichloroethane-d4		103	71-155			
Toluene-d8		99	80-120			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Project: Carriage Crest Park						Ра	ge 4 of 23		
		Units:				ug/kg			
		Method:				EPA 8260B			
Diamond Bar, CA 91765-1111			Preparatio	on:		EPA 503			
1360 Valley Vista Drive			Work Ord	er:			16-09-2276		
Tetra Tech, Inc.			Date Received:				09/30/16		

B-1,VOC-4@20'	16-09-2276-8-C	09/27/16 10:20	Solid GC/MS W	09/27/16	10/04/16 13:51	161004L008
Parameter		Result	RL	DF	Qu	alifiers
Benzene		ND	0.70	1.00		
Ethylbenzene		ND	0.70	1.00		
Toluene		ND	0.70	1.00		
p/m-Xylene		ND	1.4	1.00		
o-Xylene		ND	0.70	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	1.4	1.00		
Tert-Butyl Alcohol (TBA)		ND	14	1.00		
Diisopropyl Ether (DIPE)		ND	0.70	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.70	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.70	1.00		
Ethanol		ND	350	1.00		
Surrogate		<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene		94	80-120			
Dibromofluoromethane		99	79-133			
1,2-Dichloroethane-d4		109	71-155			
Toluene-d8		99	80-120			

Tetra Tech, Inc.			Date Rec	eived:		09/30/16		
1360 Valley Vista Drive			Work Orc	ler:			16-09-2276	
Diamond Bar, CA 91765-1111			Preparati	on:		EPA 5035		
·			Method:				EPA 8260B	
			Units:				ug/kg	
Project: Carriage Crest Park						Pa	ige 5 of 23	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-2,VOC-1@5'	16-09-2276-13-E	09/27/16 12:20	Solid	GC/MS W	09/27/16	10/04/16 18:17	161004L009	
Comment(s): - Reporting limit is elevate	d due to high levels of	of non-target hy	drocarbons					
Parameter		Result		RL	<u>DF</u>	Qua	alifiers	
Benzene		ND	:	39	50.0			
Ethylbenzene		ND	:	39	50.0			
Toluene		ND	:	39	50.0			
p/m-Xylene		ND		78	50.0			
o-Xylene		ND	:	39	50.0			
Methyl-t-Butyl Ether (MTBE)		ND		78	50.0			
Tert-Butyl Alcohol (TBA)		ND		780	50.0			
Diisopropyl Ether (DIPE)		ND	:	39	50.0			
Ethyl-t-Butyl Ether (ETBE)		ND	:	39	50.0			
Tert-Amyl-Methyl Ether (TAME)		ND	:	39	50.0			
Ethanol		ND		19000	50.0			
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene		104		80-120				
Dibromofluoromethane		98		79-133				
1,2-Dichloroethane-d4		102		71-155				
Toluene-d8		100		80-120				

Tetra Tech, Inc.			Date Rec	eived:		09/30/16	
1360 Valley Vista Drive			Work Ord	ler:			16-09-2276
Diamond Bar, CA 91765-1111			Preparatio	on:			EPA 5035
			Method:				EPA 8260B
			Units:				ug/kg
Project: Carriage Crest Park						Pa	ge 6 of 23
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2,VOC-2@10'	16-09-2276-14-E	09/27/16 12:35	Solid	GC/MS W	09/27/16	10/04/16 18:44	161004L009
Comment(s): - Reporting limit is elevate	ed due to high levels of	of non-target hy	drocarbons.				
Parameter		Result	Ē	<u>RL</u>	DF	Qua	<u>llifiers</u>
Benzene		ND	3	37	50.0		
Ethylbenzene		ND	3	37	50.0		
Toluene		ND	3	37	50.0		
p/m-Xylene		ND	7	75	50.0		
o-Xylene		ND	3	37	50.0		
Methyl-t-Butyl Ether (MTBE)		ND	7	75	50.0		
Tert-Butyl Alcohol (TBA)		ND	7	750	50.0		
Diisopropyl Ether (DIPE)		ND	3	37	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND	3	37	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND	3	37	50.0		
Ethanol		ND	ſ	19000	50.0		
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		104	8	80-120			
Dibromofluoromethane		94	7	79-133			
1,2-Dichloroethane-d4		97	7	71-155			
Toluene-d8		103	8	80-120			

B-2,VOC-3@15'	16-09-2276-15-D	09/27/16	Solid	GC/MS QQ	09/27/16	10/05/16	161005L016		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Project: Carriage Crest Park						Pa	ge 7 of 23		
		Units:					ug/kg		
		Method:				EPA 8260B			
Diamond Bar, CA 91765-1111	Preparation:				EPA 5035				
1360 Valley Vista Drive		Work Order:				16-09-2276			
Tetra Tech, Inc.	Date Received:				09/30/16				

B-2,VOC-3@15'	16-09-2276-15-D	09/27/16 13:15	Solid GC/MS	QQ 09/27/16	10/05/16 16:17	161005L016
Parameter		Result	RL	DF	Qualifiers	
Benzene		ND	0.71	1.00		
Ethylbenzene		ND	0.71	1.00		
Toluene		ND	0.71	1.00		
p/m-Xylene		ND	1.4	1.00		
o-Xylene		ND	0.71	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	1.4	1.00		
Tert-Butyl Alcohol (TBA)		ND	14	1.00		
Diisopropyl Ether (DIPE)		ND	0.71	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.71	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.71	1.00		
Ethanol		ND	350	1.00		
Surrogate		<u>Rec. (%)</u>	Control Limi	its Qualifiers		
1,4-Bromofluorobenzene		95	80-120			
Dibromofluoromethane		99	79-133			
1,2-Dichloroethane-d4		104	71-155			
Toluene-d8		100	80-120			

Tetra Tech, Inc.			Date Received:				09/30/16		
1360 Valley Vista Drive		Work Ord	er:	16-09-2276					
Diamond Bar, CA 91765-1111		Preparation:				EPA 5035			
	Method:			EPA 8260B					
			Units:				ug/kg		
Project: Carriage Crest Park						Ра	ge 8 of 23		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		

	Number	Collected		Prepared	Analyzed	
B-2,VOC-4@20'	16-09-2276-16-D	09/27/16 13:45	Solid GC/MS QQ	09/27/16	10/05/16 16:46	161005L016
Parameter		Result	RL	DF	Qu	alifiers
Benzene		ND	0.76	1.00		
Ethylbenzene		ND	0.76	1.00		
Toluene		ND	0.76	1.00		
p/m-Xylene		ND	1.5	1.00		
o-Xylene		ND	0.76	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	1.5	1.00		
Tert-Butyl Alcohol (TBA)		ND	15	1.00		
Diisopropyl Ether (DIPE)		ND	0.76	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.76	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.76	1.00		
Ethanol		ND	380	1.00		
Surrogate		<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		96	80-120			
Dibromofluoromethane		99	79-133			
1,2-Dichloroethane-d4		105	71-155			
Toluene-d8		96	80-120			

Tetra Tech, Inc.	a Tech, Inc.			eived:	09/30/16				
1360 Valley Vista Drive			Work Ord	er:		16-09-22			
Diamond Bar, CA 91765-1111			Preparatio	on:		EPA			
		Method:				EPA 8260B ug/kg			
		Units:							
Project: Carriage Crest Park						Pa	ge 9 of 23		
Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID		

	Number	Collected	maanne		Prepared	Analyzed	
B-3,VOC-1@5'	16-09-2276-21-C	09/28/16 07:30	Solid	GC/MS W	09/28/16	10/04/16 15:11	161004L008
Parameter		Result		RL	DF	Qua	alifiers
Benzene		ND		0.75	1.00		
Ethylbenzene		ND		0.75	1.00		
Toluene		ND		0.75	1.00		
p/m-Xylene		ND		1.5	1.00		
o-Xylene		ND		0.75	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		1.5	1.00		
Tert-Butyl Alcohol (TBA)		ND		15	1.00		
Diisopropyl Ether (DIPE)		ND		0.75	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.75	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.75	1.00		
Ethanol		ND		370	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		93		80-120			
Dibromofluoromethane		99		79-133			
1,2-Dichloroethane-d4		115		71-155			
Toluene-d8		99		80-120			

B-3,VOC-2@10'	16-09-2276-22-C	09/28/16 08:00	Solid	GC/MS W	09/28/16	10/04/16 15:38	161004L008		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Project: Carriage Crest Park						Pag	e 10 of 23		
	Units:						ug/kg		
		EPA 8260B							
Diamond Bar, CA 91765-1111		Preparation: Method:					EPA 5035		
1360 Valley Vista Drive			Work Ord	er:		16-09-2276			
Tetra Tech, Inc.			Date Rec	eived:			09/30/16		

10-09-2270-22-0	09/28/16 08:00	Solid GC/WS W	09/20/10	15:38	1010042000
	<u>Result</u>	<u>RL</u>	DF	Qu	alifiers
	ND	0.91	1.00		
	ND	0.91	1.00		
	ND	0.91	1.00		
	ND	1.8	1.00		
	ND	0.91	1.00		
	ND	1.8	1.00		
	ND	18	1.00		
	ND	0.91	1.00		
	ND	0.91	1.00		
	ND	0.91	1.00		
	ND	460	1.00		
	<u>Rec. (%)</u>	Control Limits	Qualifiers		
	94	80-120			
	105	79-133			
	117	71-155			
	101	80-120			
	10-09-2270-22-0	08:00 Result ND ND ND ND ND ND ND ND ND ND	ND RL ND 0.91 ND 1.8 ND 1.8 ND 18 ND 0.91 ND 460 T 71-155	Result RL DE ND 0.91 1.00 ND 1.8 1.00 ND 1.8 1.00 ND 1.8 1.00 ND 0.91 1.00 ND 460 1.00 ND 94 80-120 105 79-133 117 117 71-155 115	ND RL DE Qu ND 0.91 1.00 ND 1.8 1.00 ND 0.91 1.00 ND 460 1.00 ND 80-120 105 105 79-133 117 117 71-155 V

p/m-Xylene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Dibromofluoromethane

1,2-Dichloroethane-d4

Tert-Amyl-Methyl Ether (TAME)

o-Xylene

Ethanol

Surrogate

Toluene-d8

Tetra Tech, Inc.			Date Rece	eived:		09/30/16		
1360 Valley Vista Drive			Work Orde	er:		16-09-2276		
Diamond Bar, CA 91765-1111			Preparatio	n:		EPA 503		
			Method:				EPA 8260B	
			Units:				ug/kg	
Project: Carriage Crest Park						Pag	je 11 of 23	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-3,VOC-3@15'	16-09-2276-23-C	09/28/16 08:30	Solid	GC/MS QQ	09/28/16	10/05/16 17:15	161005L016	
Parameter		Result	R	<u>L</u>	DF	Qua	alifiers	
Benzene		ND	1	.3	1.00			
Ethylbenzene		ND	1	.3	1.00			
Toluene		ND	4	.3	1.00			

2.6

1.3

2.6

26

1.3

1.3

1.3

640

80-120

79-133

71-155

80-120

Control Limits

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

ND

ND

ND

ND

ND

ND

ND

ND

90

91

93

98

Rec. (%)

B-3,VOC-4@20'	16-09-2276-24-C	09/28/16 09:00	Solid	GC/MS QQ	09/28/16	10/05/16 17:44	161005L016		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Project: Carriage Crest Park						Pag	e 12 of 23		
	Units:					ug/kg			
		Method:							
Diamond Bar, CA 91765-1111		Preparation:					EPA 5035		
1360 Valley Vista Drive			Work Order:			16-09-2276			
Tetra Tech, Inc.		Date Received:				09/30/16			

B-3,VOC-4@20'	16-09-2276-24-C	09/28/16 09:00	Solid GC/MS QQ	09/28/16	10/05/16 17:44	161005L016
Parameter		Result	<u>RL</u>	DF	<u>Qu</u>	alifiers
Benzene		ND	0.93	1.00		
Ethylbenzene		ND	0.93	1.00		
Toluene		ND	0.93	1.00		
p/m-Xylene		ND	1.9	1.00		
o-Xylene		ND	0.93	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	1.9	1.00		
Tert-Butyl Alcohol (TBA)		ND	19	1.00		
Diisopropyl Ether (DIPE)		ND	0.93	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.93	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.93	1.00		
Ethanol		ND	460	1.00		
			O and the late institut	Qualifiant		
Surrogate		<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		93	80-120			
Dibromofluoromethane		102	79-133			
1,2-Dichloroethane-d4		108	71-155			
Toluene-d8		101	80-120			

Tetra Tech, Inc.			Date Rece	eived:		09/30/16		
1360 Valley Vista Drive			Work Ord	er:		16-09-2276		
Diamond Bar, CA 91765-1111			Preparatio	EPA 5035				
			Method:	EPA 8260B				
			Units:	ug/kg				
Project: Carriage Crest Park						Pag	je 13 of 23	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-4,VOC-1@5'	16-09-2276-29-C	09/28/16 11:20	Solid	GC/MS QQ	09/28/16	10/05/16 18:13	161005L016	
Parameter		Result	Ē	RL	DF	Qua	alifiers	

	-			
Parameter	Result	RL	DF	Qualifiers
Benzene	1.1	0.76	1.00	
Ethylbenzene	ND	0.76	1.00	
Toluene	ND	0.76	1.00	
p/m-Xylene	ND	1.5	1.00	
o-Xylene	ND	0.76	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.5	1.00	
Tert-Butyl Alcohol (TBA)	ND	15	1.00	
Diisopropyl Ether (DIPE)	ND	0.76	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.76	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.76	1.00	
Ethanol	ND	380	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	94	80-120		
Dibromofluoromethane	100	79-133		
1,2-Dichloroethane-d4	107	71-155		
Toluene-d8	98	80-120		

							00/00/110
Tetra Tech, Inc.			Date Rec				09/30/16
1360 Valley Vista Drive			Work Ord	er:			16-09-2276
Diamond Bar, CA 91765-1111			Preparatio	on:			EPA 5035
			Method:				EPA 8260B
			Units:				ug/kg
Project: Carriage Crest Park						Pag	je 14 of 23
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4,VOC-2@10'	16-09-2276-30-Е	09/28/16 11:40	Solid	GC/MS W	09/28/16	10/04/16 19:10	161004L009
Comment(s): - Reporting limit is eleva	ted due to high levels of	of non-target hy	/drocarbons.				
Parameter		Result	<u>F</u>	<u>RL</u>	DF	Qua	alifiers
Benzene		ND	2	12	50.0		
Ethylbenzene		ND	2	12	50.0		
Toluene		ND	2	12	50.0		
p/m-Xylene		ND	8	34	50.0		
o-Xylene		ND	2	12	50.0		
Methyl-t-Butyl Ether (MTBE)		ND	8	34	50.0		
Tert-Butyl Alcohol (TBA)		ND	8	340	50.0		
Diisopropyl Ether (DIPE)		ND	2	12	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND	2	12	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND	2	12	50.0		
Ethanol		ND	2	21000	50.0		
Surrogate		<u>Rec. (%)</u>	(Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		100	8	30-120			
Dibromofluoromethane		88	7	79-133			
1,2-Dichloroethane-d4		86	7	71-155			
Toluene-d8		99	8	30-120			

o-Xylene

Ethanol

Surrogate

Toluene-d8

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Dibromofluoromethane

1,2-Dichloroethane-d4

Tert-Amyl-Methyl Ether (TAME)

Tetra Tech, Inc.			Date Recei	ved:			09/30/16	
1360 Valley Vista Drive			Work Orde	r:			16-09-2276	
Diamond Bar, CA 91765-1111			Preparation	ו:	EPA 5035			
			Method:				EPA 8260B	
			Units:			ug/kg		
Project: Carriage Crest Park						Pag	e 15 of 23	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-4,VOC-3@15'	16-09-2276-31-E	09/28/16 12:10	Solid	GC/MS W	09/28/16	10/04/16 19:37	161004L009	
Parameter		Result	RL	-	DF	Qua	alifiers	
Benzene		ND	37		50.0			
Ethylbenzene		ND	37		50.0			
Toluene		ND	37		50.0			
p/m-Xylene		ND	74		50.0			

37

74

740

37

37

37

18000

80-120

79-133

71-155

80-120

Control Limits

50.0

50.0

50.0

50.0

50.0

50.0

50.0

Qualifiers

49

ND

ND

ND

ND

ND

ND

99

88

81

99

Rec. (%)

Ethylbenzene

Toluene

o-Xylene

Ethanol

Surrogate

Toluene-d8

p/m-Xylene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

1,4-Bromofluorobenzene

Dibromofluoromethane

1,2-Dichloroethane-d4

Tert-Amyl-Methyl Ether (TAME)

Tetra Tech, Inc.			Date Red	ceived:		09/30/16		
1360 Valley Vista Drive			Work Ore	der:		16-09-2276		
Diamond Bar, CA 91765-1111		Preparation:					EPA 5035	
			Method:			EPA 8260B		
		Units:					ug/kg	
Project: Carriage Crest Park						Pag	e 16 of 23	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-4,VOC-4@20'	16-09-2276-32-C	09/28/16 12:30	Solid	GC/MS QQ	09/28/16	10/05/16 18:41	161005L016	
Parameter		Result		RL	DF	Qua	alifiers	
Benzene		ND		0.70	1.00			

0.70

0.70

1.4

0.70

1.4

14

0.70

0.70

0.70

350

80-120

79-133

71-155

80-120

Control Limits

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

ND

97

97

106

99

Rec. (%)

Tetra Tech, Inc.			Date Rec	eived:		09/30/16		
1360 Valley Vista Drive			Work Ord	er:		16-09-2276		
Diamond Bar, CA 91765-1111			Preparatio	EPA 503				
			Method:			EPA 8260B		
		Units:					ug/kg	
Project: Carriage Crest Park						Pag	e 17 of 23	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-5,VOC-1@5'	16-09-2276-37-C	09/28/16 13:30	Solid	GC/MS QQ	09/28/16	10/05/16 19:10	161005L016	
Parameter		Result	Ē	RL	DF	Qua	alifiers	
Benzene		ND	().79	1.00			

Parameter	Result	<u>RL</u>	DF	Qualifiers
Benzene	ND	0.79	1.00	
Ethylbenzene	ND	0.79	1.00	
Toluene	ND	0.79	1.00	
p/m-Xylene	ND	1.6	1.00	
o-Xylene	ND	0.79	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.6	1.00	
Tert-Butyl Alcohol (TBA)	ND	16	1.00	
Diisopropyl Ether (DIPE)	ND	0.79	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.79	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.79	1.00	
Ethanol	ND	400	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	101	80-120		
Dibromofluoromethane	101	79-133		
1,2-Dichloroethane-d4	108	71-155		
Toluene-d8	100	80-120		

Tetra Tech, Inc.		Date Received:					09/30/16			
1360 Valley Vista Drive		Work Order:					16-09-2276			
Diamond Bar, CA 91765-1111			Preparatio	on:			EPA 5035			
			Method:				EPA 8260B			
			Units:				ug/kg			
Project: Carriage Crest Park						Pag	je 18 of 23			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
B-5,VOC-2@10'	16-09-2276-38-C	09/28/16 13:45	Solid	GC/MS QQ	09/28/16	10/05/16 19:39	161005L016			
Parameter		Result	R	?!	DE	0.12	alifiers			

ParameterResultBenzeneNDEthylbenzeneND	<u>RL</u> 0.67 0.67 0.67	<u>DF</u> 1.00 1.00	<u>Qualifiers</u>
	0.67		
Ethylbenzene ND		1.00	
	0.67		
Toluene ND	0.01	1.00	
p/m-Xylene ND	1.3	1.00	
o-Xylene ND	0.67	1.00	
Methyl-t-Butyl Ether (MTBE) ND	1.3	1.00	
Tert-Butyl Alcohol (TBA) ND	13	1.00	
Diisopropyl Ether (DIPE) ND	0.67	1.00	
Ethyl-t-Butyl Ether (ETBE) ND	0.67	1.00	
Tert-Amyl-Methyl Ether (TAME) ND	0.67	1.00	
Ethanol ND	340	1.00	
Surrogate Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene 96	80-120		
Dibromofluoromethane 94	79-133		
1,2-Dichloroethane-d4 104	71-155		
Toluene-d8 100	80-120		

Tetra Tech, Inc.		Date Received:					09/30/16	
1360 Valley Vista Drive	Work Order:				16-09-2276			
Diamond Bar, CA 91765-1111	Preparation:					EPA 5035		
	Method:				EPA 8260B			
			Units:			ug/kg		
Project: Carriage Crest Park						Pag	e 19 of 23	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-5,VOC-3@15'	16-09-2276-39-C	09/28/16 14:10	Solid	GC/MS QQ	09/28/16	10/05/16 20:08	161005L016	
Parameter		Result	Ē	<u>RL</u>	DF	Qua	alifiers	

Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Benzene	ND	0.81	1.00	
Ethylbenzene	ND	0.81	1.00	
Toluene	ND	0.81	1.00	
p/m-Xylene	ND	1.6	1.00	
o-Xylene	ND	0.81	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.6	1.00	
Tert-Butyl Alcohol (TBA)	ND	16	1.00	
Diisopropyl Ether (DIPE)	ND	0.81	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.81	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.81	1.00	
Ethanol	ND	410	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	96	80-120		
Dibromofluoromethane	101	79-133		
1,2-Dichloroethane-d4	105	71-155		
Toluene-d8	97	80-120		

Parameter Benzene		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
B-5,VOC-4@20'	16-09-2276-40-C	09/28/16 14:45	Solid	GC/MS QQ	09/28/16	10/05/16 20:37	161005L016
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: Carriage Crest Park						Pag	e 20 of 23
			Units:				ug/kg
			Method:				EPA 8260B
Diamond Bar, CA 91765-1111	Preparation:				EPA 5035		
1360 Valley Vista Drive			Work Ord	er:			16-09-2276
Tetra Tech, Inc.			Date Rec	eived:			09/30/16

Benzene	ND	0.89	1.00
Ethylbenzene	ND	0.89	1.00
Toluene	ND	0.89	1.00
p/m-Xylene	ND	1.8	1.00
o-Xylene	ND	0.89	1.00
Methyl-t-Butyl Ether (MTBE)	ND	1.8	1.00
Tert-Butyl Alcohol (TBA)	ND	18	1.00
Diisopropyl Ether (DIPE)	ND	0.89	1.00
Ethyl-t-Butyl Ether (ETBE)	ND	0.89	1.00
Tert-Amyl-Methyl Ether (TAME)	ND	0.89	1.00
Ethanol	ND	450	1.00
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	96	80-120	
Dibromofluoromethane	99	79-133	
1,2-Dichloroethane-d4	105	71-155	
Toluene-d8	97	80-120	

Analytical Repo	ort

Tetra Tech, Inc.			Date Rece	eived:		09/30/16			
1360 Valley Vista Drive			Work Ord	er:		16-09-2276			
Diamond Bar, CA 91765-1111			Preparatio	on:			EPA 5035		
		Method:				EPA 8260B			
		Units:				ug/kg			
Project: Carriage Crest Park						Pag	je 21 of 23		
Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID		

	Number	Collected			Prepared	Analyzed	
Method Blank	095-01-025-28074	N/A	Solid G	GC/MS W	10/04/16	10/04/16 12:58	161004L008
Parameter		Result	RL		<u>DF</u>	Qua	lifiers
Benzene		ND	1.0		1.00		
Ethylbenzene		ND	1.0		1.00		
Toluene		ND	1.0		1.00		
p/m-Xylene		ND	2.0		1.00		
o-Xylene		ND	1.0		1.00		
Methyl-t-Butyl Ether (MTBE)		ND	2.0		1.00		
Tert-Butyl Alcohol (TBA)		ND	20		1.00		
Diisopropyl Ether (DIPE)		ND	1.0		1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	1.0		1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	1.0		1.00		
Ethanol		ND	500		1.00		
Surrogate		<u>Rec. (%)</u>	Contr	ol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		96	80-12	20			
Dibromofluoromethane		99	79-13	33			
1,2-Dichloroethane-d4		104	71-15	55			
Toluene-d8		100	80-12	20			

Tetra Tech, Inc.			Date Rece	Received: 09/30/1				
1360 Valley Vista Drive	1360 Valley Vista Drive			Work Order:			16-09-2276	
Diamond Bar, CA 91765-1111			Preparatio	on:			EPA 5035	
		Method:				EPA 8260B		
		Units:					ug/kg	
Project: Carriage Crest Park						Pag	je 22 of 23	
Client Sample Number	Lab Sample	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	

	Number	Collected		Prepared	Analyzed	
Method Blank	095-01-025-28083	N/A	Solid GC	C/MS W 10/04/16	10/04/16 13:25	161004L009
Parameter		Result	<u>RL</u>	DF	Qu	alifiers
Benzene		ND	100	50.0		
Ethylbenzene		ND	100	50.0		
Toluene		ND	100	50.0		
p/m-Xylene		ND	200	50.0		
o-Xylene		ND	100	50.0		
Methyl-t-Butyl Ether (MTBE)		ND	200	50.0		
Tert-Butyl Alcohol (TBA)		ND	2000	50.0		
Diisopropyl Ether (DIPE)		ND	100	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND	100	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND	100	50.0		
Ethanol		ND	50000	50.0		
Surrogate		<u>Rec. (%)</u>	<u>Control</u>	Limits Qualifiers		
1,4-Bromofluorobenzene		97	80-120			
Dibromofluoromethane		95	79-133			
1,2-Dichloroethane-d4		99	71-155			
Toluene-d8		98	80-120			

Calscience

Tetra Tech, Inc.			Date Rece	eived:		09/30/16			
1360 Valley Vista Drive	1360 Valley Vista Drive			Work Order:			16-09-2276		
Diamond Bar, CA 91765-1111			Preparatio	on:			EPA 5035		
			Method:			EPA 8260B			
			Units:				ug/kg		
Project: Carriage Crest Park						Pag	e 23 of 23		
Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID		

·	Number	Collected		Prepared	Analyzed	
Method Blank	095-01-025-28085	N/A	Solid GC/MS	QQ 10/05/16	10/05/16 11:28	161005L016
Parameter		Result	RL	DF	Qu	alifiers
Benzene		ND	1.0	1.00		
Ethylbenzene		ND	1.0	1.00		
Toluene		ND	1.0	1.00		
p/m-Xylene		ND	2.0	1.00		
o-Xylene		ND	1.0	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	2.0	1.00		
Tert-Butyl Alcohol (TBA)		ND	20	1.00		
Diisopropyl Ether (DIPE)		ND	1.0	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	1.0	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	1.0	1.00		
Ethanol		ND	500	1.00		
Surrogate		<u>Rec. (%)</u>	Control Limits	<u>s</u> <u>Qualifiers</u>		
1,4-Bromofluorobenzene		97	80-120			
Dibromofluoromethane		93	79-133			
1,2-Dichloroethane-d4		90	71-155			
Toluene-d8		97	80-120			

Tetra Tech, Inc.				Date F	Received	:				09/30/16
1360 Valley Vista Drive				Work (Order:				16	6-09-2276
Diamond Bar, CA 91765-1111				Prepa	ation:				EF	PA 5030C
				Metho	d:				EPA 8	8015B (M)
Project: Carriage Crest Pa	ark								Page 1	of 4
Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
16-10-0163-1	Sample		Solid	GC	1	10/04/16	10/05/16	08:42	161004S018	
16-10-0163-1	Matrix Spike		Solid	GC	1	10/04/16	10/05/16	11:4 0	161004S018	
16-10-0163-1	Matrix Spike	Duplicate	Solid	GC	1	10/04/16	10/05/16	12:16	161004S018	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	ND	10.00	9.424	94	8.359	84	48-114	12	0-23	

Tetra Tech, Inc.				Date F	Received	:				09/30/16
1360 Valley Vista Drive				Work Order:				16-09-2276		
Diamond Bar, CA 91765-1111				Preparation:					EF	PA 5030C
				Metho	d:				EPA 8	015B (M)
Project: Carriage Crest Pa	ark								Page 2	of 4
Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
16-10-0013-6	Sample		Solid	GC	1	10/04/16	10/05/16	15:14	161004S021	
16-10-0013-6	Matrix Spike		Solid	GC	1	10/04/16	10/05/16	16:25	161004S021	
16-10-0013-6	Matrix Spike	Duplicate	Solid	GC	1	10/04/16	10/05/16	17: 00	161004S021	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Gasoline	ND	10.00	6.972	70	5.106	51	48-114	31	0-23	4

Calscience

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc.				Date F	Received	:				09/30/16
1360 Valley Vista Drive				Work (Order:				16	6-09-2276
Diamond Bar, CA 91765-1111				Prepa	ration:				EF	PA 5030C
				Metho	d:				EPA 8	015B (M)
Project: Carriage Crest Pa	ark								Page 3	of 4
Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
16-10-0046-2	Sample		Solid	GC	1	10/04/16	10/06/16	15:13	161006S023	
16-10-0046-2	Matrix Spike		Solid	GC	1	10/04/16	10/06/16	15:48	161006S023	
16-10-0046-2	Matrix Spike	Duplicate	Solid	GC	1	10/04/16	10/06/16	16:24	161006S023	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	ND	10.00	7.458	75	6.394	64	48-114	15	0-23	

Return to Contents

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
Project: Carriage Crest Park		Page 4 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepar	ed Date Ana	lyzed	MS/MSD Ba	tch Number
B-3,P-2@5'	Sample		Solid	GC	44	10/03/16	10/04/16	14:22	161003S02	4
B-3,P-2@5'	Matrix Spike		Solid	GC	44	10/03/16	10/04/16	12:34	161003S02	4
B-3,P-2@5'	Matrix Spike	Duplicate	Solid	GC	44	10/03/16	10/04/16	12:48	161003S02	4
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Aldrin	ND	25.00	21.14	85	17.81	71	50-135	17	0-25	
Alpha-BHC	ND	25.00	21.73	87	18.21	73	50-135	18	0-25	
Beta-BHC	ND	25.00	22.12	88	19.74	79	50-135	11	0-25	
4,4'-DDD	827.5	25.00	248.1	0	176.7	0	50-135	34	0-25	3,4
4,4'-DDE	247.5	25.00	274.4	108	236.1	0	50-135	15	0-25	3
4,4'-DDT	1058	25.00	516.2	0	338.6	0	50-135	42	0-25	3,4
Delta-BHC	ND	25.00	25.12	100	21.54	86	50-135	15	0-25	
Dieldrin	ND	25.00	23.76	95	20.74	83	50-135	14	0-25	
Endosulfan I	ND	25.00	26.18	105	21.01	84	50-135	22	0-25	
Endosulfan II	ND	25.00	24.83	99	21.78	87	50-135	13	0-25	
Endosulfan Sulfate	ND	25.00	22.79	91	19.74	79	50-135	14	0-25	
Endrin	ND	25.00	21.33	85	18.72	75	50-135	13	0-25	
Endrin Aldehyde	ND	25.00	21.92	88	18.97	76	50-135	14	0-25	
Gamma-BHC	ND	25.00	22.40	90	19.08	76	50-135	16	0-25	
Heptachlor	ND	25.00	22.61	90	19.16	77	50-135	17	0-25	
Heptachlor Epoxide	ND	25.00	33.48	134	27.94	112	50-135	18	0-25	
Methoxychlor	ND	25.00	24.17	97	20.95	84	50-135	14	0-25	

Tetra Tech, Inc.			Date Receiv	ved:		09/30/16
1360 Valley Vista Drive			Work Order	:		16-09-2276
Diamond Bar, CA 91765-	1111		Preparation	:		EPA 5030C
			Method:			EPA 8015B (M)
Project: Carriage Crest Pa	ark					Page 1 of 9
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number

Quality Control Sample ID	Туре	Watrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-571-3312	LCS	Solid	GC 1	10/04/16	10/04/16 19:40	161004L046
Parameter		Spike Added	Conc. Recove	red LCS %Re	<u>ec. %Rec</u>	. CL Qualifiers
TPH as Gasoline		10.00	11.23	112	70-124	4

Tetra Tech, Inc.			Date Recei	ved:		09/30/16
1360 Valley Vista Drive			Work Order			16-09-2276
Diamond Bar, CA 91765-1	111		Preparation	1:		EPA 5030C
			Method:			EPA 8015B (M)
Project: Carriage Crest Pa	ark					Page 2 of 9
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number

Quality Control Sample ID	Туре	IVIALITX	Instrument	Date Flepaleu	Date Analyzeu	LCS Balch Number
099-14-571-3313	LCS	Solid	GC 1	10/03/16	10/05/16 13:27	161004L050
Parameter		Spike Added	Conc. Recover	red LCS %Re	ec. <u>%Rec</u>	. CL Qualifiers
TPH as Gasoline		10.00	11.42	114	70-124	4

Tetra Tech, Inc.			Date Receiv	ved:		09/30/16
1360 Valley Vista Drive			Work Order	:		16-09-2276
Diamond Bar, CA 91765-1	111		Preparation	:		EPA 5030C
			Method:			EPA 8015B (M)
Project: Carriage Crest Par	k					Page 3 of 9
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-571-3314	LCS	Solid	GC 1	10/06/16	10/06/16 11:39	161006L049
Parameter		Spike Added	Conc. Recove	ered LCS %Re	<u>ec. %Rec</u>	<u>. CL</u> <u>Qualifiers</u>
TPH as Gasoline		10.00	10.12	101	70-124	4

🛟 eurofins Calscience

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
Project: Carriage Crest Park		Page 4 of 9

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
099-12-537-2530	LCS	Solid	GC 41	10/03/16	10/06/16 11:19	161003L02A	
Parameter	<u>Spike</u> A	Added Conc.	Recovered LCS	<u>%Rec.</u> %R	Rec. CL ME	<u>E CL</u>	Qualifiers
Aldrin	25.00	26.86	107	50-	135 36	-149	
Alpha-BHC	25.00	27.06	108	50-	135 36	-149	
Beta-BHC	25.00	24.93	100	50-	135 36	-149	
4,4'-DDD	25.00	28.43	114	50-	135 36	-149	
4,4'-DDE	25.00	29.63	119	50-	135 36	-149	
4,4'-DDT	25.00	32.29	129	50-	135 36	-149	
Delta-BHC	25.00	28.99	116	50-	135 36	-149	
Dieldrin	25.00	28.79	115	50-	135 36	-149	
Endosulfan I	25.00	26.94	108	50-	135 36	-149	
Endosulfan II	25.00	29.53	118	50-	135 36	-149	
Endosulfan Sulfate	25.00	27.70	111	50-	135 36	-149	
Endrin	25.00	20.13	81	50-	135 36	-149	
Endrin Aldehyde	25.00	33.98	136	50-	135 36	-149	ME
Gamma-BHC	25.00	27.79	111	50-	135 36	-149	
Heptachlor	25.00	28.97	116	50-	135 36	-149	
Heptachlor Epoxide	25.00	27.72	111	50-	135 36	-149	
Methoxychlor	25.00	30.64	123	50-	135 36	-149	

Total number of LCS compounds: 17 Total number of ME compounds: 1 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

🛟 eurofins |

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 8151A
	Method:	EPA 8151A
Project: Carriage Crest Park		Page 5 of 9

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	epared Date	Analyzed	LCS/LCSD B	atch Number
095-01-033-1405	LCS	Sol	id	GC 40	10/01/16	5 10/0	7/16 21:12	161001L01	
095-01-033-1405	LCSD	Sol	id	GC 40	10/01/16	5 10/0 [°]	7/16 21:35	161001L01	
Parameter	Spike Addeo	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
2,4-D	400.0	378.0	94	389.0	97	30-130	3	0-30	
2,4,5-T	40.00	41.00	102	43.00	108	30-130	5	0-30	
2,4-DB	400.0	427.0	107	452.0	113	30-130	6	0-30	

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: Carriage Crest Park		Page 6 of 9

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
099-14-001-21504	LCS		Aqueous		GC/MS WW	10/04/16	10/04/	16 09:46	161004L002	
099-14-001-21504	LCSD		Aqueous		GC/MS WW	10/04/16	10/04/	16 10:20	161004L002	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSE Conc		<u>%Rec. CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	50.00	48.42	97	46.78	94	80-120	73-127	3	0-20	
Ethylbenzene	50.00	56.28	113	52.84	106	80-123	73-130	6	0-20	
Toluene	50.00	48.94	98	52.07	104	80-120	73-127	6	0-20	
p/m-Xylene	100.0	114.6	115	105.3	105	75-123	67-131	8	0-20	
o-Xylene	50.00	59.23	118	56.44	113	74-122	66-130	5	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	53.53	107	52.77	106	69-129	59-139	1	0-20	
Tert-Butyl Alcohol (TBA)	250.0	275.4	110	274.6	110	69-129	59-139	0	0-20	
Diisopropyl Ether (DIPE)	50.00	50.54	101	49.34	99	68-128	58-138	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	56.62	113	55.90	112	63-135	51-147	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	56.76	114	56.59	113	67-133	56-144	0	0-20	
Ethanol	500.0	451.8	90	447.7	90	42-168	21-189	1	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0 Total number of ME compounds allowed: 1

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 5035
	Method:	EPA 8260B
Project: Carriage Crest Park		Page 7 of 9

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-025-28074	LCS		Solid	GC	/MS W	10/04/16	10/04/1	16 10:18	161004L008	
095-01-025-28074	LCSD		Solid	GC	/MS W	10/04/16	10/04/1	16 10:45	161004L008	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	<u>LCSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	50.00	43.06	86	40.69	81	80-120	73-127	6	0-20	
Ethylbenzene	50.00	43.74	87	42.30	85	80-120	73-127	3	0-20	
Toluene	50.00	43.80	88	41.35	83	80-120	73-127	6	0-20	
p/m-Xylene	100.0	85.30	85	82.99	83	75-125	67-133	3	0-25	
o-Xylene	50.00	44.49	89	42.83	86	75-125	67-133	4	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	50.17	100	43.10	86	70-124	61-133	15	0-20	
Tert-Butyl Alcohol (TBA)	250.0	233.8	94	220.8	88	73-121	65-129	6	0-20	
Diisopropyl Ether (DIPE)	50.00	45.73	91	43.57	87	69-129	59-139	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	46.11	92	44.18	88	70-124	61-133	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	45.50	91	43.08	86	74-122	66-130	5	0-20	
Ethanol	500.0	460.2	92	448.0	90	51-135	37-149	3	0-27	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 5035
	Method:	EPA 8260B
Project: Carriage Crest Park		Page 8 of 9

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-025-28083	LCS		Solid	GC	/MS W	10/04/16	10/04/ 1	l6 10:18	161004L009	
095-01-025-28083	LCSD		Solid	GC	/MS W	10/04/16	10/04/1	6 10:45	161004L009	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	<u>LCSD</u> %Rec.	<u>%Rec. CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	50.00	43.06	86	40.69	81	80-120	73-127	6	0-20	
Ethylbenzene	50.00	43.74	87	42.30	85	80-120	73-127	3	0-20	
Toluene	50.00	43.80	88	41.35	83	80-120	73-127	6	0-20	
p/m-Xylene	100.0	85.30	85	82.99	83	75-125	67-133	3	0-25	
o-Xylene	50.00	44.49	89	42.83	86	75-125	67-133	4	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	50.17	100	43.10	86	70-124	61-133	15	0-20	
Tert-Butyl Alcohol (TBA)	250.0	233.8	94	220.8	88	73-121	65-129	6	0-20	
Diisopropyl Ether (DIPE)	50.00	45.73	91	43.57	87	69-129	59-139	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	46.11	92	44.18	88	70-124	61-133	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	45.50	91	43.08	86	74-122	66-130	5	0-20	
Ethanol	500.0	460.2	92	448.0	90	51-135	37-149	3	0-27	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Calscience

Quality Control - LCS/LCSD

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 5035
	Method:	EPA 8260B
Project: Carriage Crest Park		Page 9 of 9

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-025-28085	LCS		Solid	G	C/MS QQ	10/05/16	10/05/1	6 09:44	161005L016	
095-01-025-28085	LCSD		Solid	G	C/MS QQ	10/05/16	10/05/1	6 10:12	161005L016	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	<u>LCSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	50.00	46.70	93	43.19	86	80-120	73-127	8	0-20	
Ethylbenzene	50.00	49.32	99	45.13	90	80-120	73-127	9	0-20	
Toluene	50.00	47.89	96	44.64	89	80-120	73-127	7	0-20	
p/m-Xylene	100.0	101.5	101	92.87	93	75-125	67-133	9	0-25	
o-Xylene	50.00	53.18	106	48.36	97	75-125	67-133	9	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	45.13	90	43.19	86	70-124	61-133	4	0-20	
Tert-Butyl Alcohol (TBA)	250.0	210.2	84	202.0	81	73-121	65-129	4	0-20	
Diisopropyl Ether (DIPE)	50.00	40.21	80	37.45	75	69-129	59-139	7	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	45.45	91	42.43	85	70-124	61-133	7	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	47.92	96	44.58	89	74-122	66-130	7	0-20	
Ethanol	500.0	377.4	75	331.3	66	51-135	37-149	13	0-27	

Total number of LCS compounds: 11

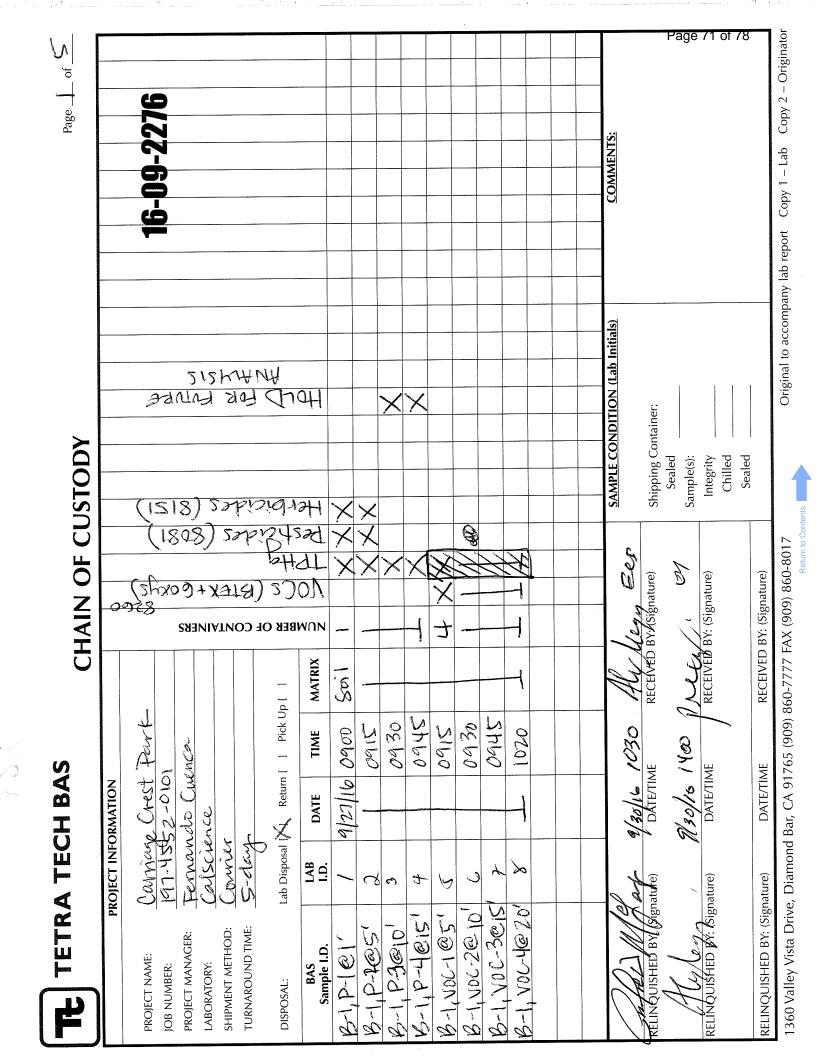
Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Calscience

Work Order: 16-09-2276				Page 1 of 1				
Method	Extraction	Chemist ID	Instrument	Analytical Location				
EPA 8015B (M)	EPA 5030C	1083	GC 1	2				
EPA 8081A	EPA 3545	669	GC 41	1				
EPA 8081A	EPA 3545	669	GC 44	1				
EPA 8151A	EPA 8151A	944	GC 40	1				
EPA 8260B	EPA 5035	486	GC/MS QQ	2				
EPA 8260B	EPA 5035	867	GC/MS W	2				
EPA 8260B	EPA 5030C	1073	GC/MS WW	2				

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841


Calscience

Work Order: 16-09-2276

Glossary of Terms and Qualifiers

Work Order:	16-09-2276 Page 1 of 1
<u>Qualifiers</u>	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Page Z_ of S			S	Copy 1 – Lab Copy 2 – Originator
2276				Original to accompany lab report Copy
IODY		SISMUNU SISMUNU AND LOC FOLDEE	Shipping Container: Shipping Container: Sealed Sample(s): Integrity Chilled Sealed Sealed	Original to a
IAIN OF CUSTODY	(X X HEURICIDES (8121) X X JECUCIDES (8081) X X X LBHD X X ACC(81E+ * CONVINEE - V - V	RECEIVED BY: (Signature) SA RECEIVED BY: (Signature) Sh RECEIVED BY: (Signature) 1 RECEIVED BY: (Signature) 1	VX (909) 860-8017
CHAI		Park Park Park Pick Up [] Pick Up [] TIME MATRIX TIME MATRIX 12200 Solu 1235 12200 1235 1235 1235 1245 1345 1345 1345 1345 1345		909) 860-7777 F/
CH BAS	PROJECT INFORMATION	CREAT C-CLEAT C-CLEAT Return [] Return [] CUEAT Return []	9/20/10 1003 DATE/TIME 9/30/10 1900 DATE/TIME DATE/TIME	d Bar, CA 91765 (
RA TE	PROJECT IN		Wedath : (fighature) : (Signature) : (Signature)	Drive, Diamon
TE TECH BAS		PROJECT NAME: JOB NUMBER: PROJECT MANAGER: LABORATORY: SHIPMENT METHOD: TURNAROUND TIME: DISPOSAL: DISPOSAL: BAS Sample I.D. B-2, P-3 © 10' B-2, P-3 © 10' B-2, P-3 © 10' B-2, V0C-1 © 5' B-2, V0C-1 © 5' B-2, V0C-2 © 5'	RELINQUISHED BY: (Fighature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)	1360 Valley Vista Drive, Diamond Bar, CA 91765 (909) 860-7777 FAX (9

$(23H)^{\text{Page}}$ $\overline{3}$ of $\overline{5}$			COMMENTS	eport Copy 1 – Lab Copy 2 – Uriginator
CHAIN OF CUSTODY		SISMUNU SISMUNU Januar Sismunu (ISIZ) September of Signature (ISIZ) September of Signature Sig	SAMPLE CONDITIO Shipping Container: Sealed Sample(s): Integrity Chilled Sealed	0-8017 Original to accompany lab report
CHAIN	077		RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature))-7777 FAX (909) 8
CH BAS	PROJECT INFORMATION	Crest P 2101 2101 Cuence e 10 10 10 10 10 10 10 10 10 10	9/20/16 1030 R DATE/TIME R DATE/TIME R DATE/TIME R DATE/TIME R	nd Bar, CA 91765 (909) 86(
TETRA TECH BAS	PROJECT IN	PROJECT NAME: JOB NUMBER: JOB NUMBER: PROJECT MANAGER: LABORATORY: SHIPMENT METHOD: TURNAROUND TIME: PLAB Disposal [X] F DISPOSAL: Lab Disposal [X] F DISPOSAL: Lab Disposal [X] F BAS LAB BAS LAB BAS LAB DAT Sample LD. LAB DAT Sample LD. LAB Sample LD. LAB SA Sample LD. LAB SA Sample LD. LAB SA SA SA SA SA SA SA SA SA SA	RELINQUISHED BY Signature) RELINQUISHED BY Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)	1360 Valley Vista Drive, Diamond Bar, CA 91765 (909) 860-7777 FAX (909) 860-8017 Return to

- 1. m. 1

ن of S												-		Page	74 of 78	3
$(22\mathcal{H})^{\text{Page}}$)											COMMENTS				
CUSTODY			1017			×.	×					SAMPLE CONDITION (Lab Initials)	Shipping Container:	Sample(s):	Integrity Chilled Sealed	
CHAIN OF CUS	02	P. CYARS (8121) HCYARS (8081) S(BLEX + C OKAZ) 83 3EB OF CONTRINERS	124 1321 121 201	X X X X X -	××× ×	×	× 1	t XX			T T /			In the	(Signature)	RECEIVED BY: (Signature)
CI			MATRIX	Serl							-	N. N	RECEIVED	N		RECEIVED
AS	7	Ct Perk -0101 Mencal	TIME	6 110p	0711	ilyo	1210	1120	1140	1210	1230		DATE/TIME	Cot = 1/02	IME	'IME
CH B/	FORMATION	× 10 × 1	DATE	91/22/10								abali	DATEN	1/20/	¹ DATE/1	DATE/TIME
TETRA TECH BAS	PROJECT INFORMATION	Carnage Cr 197-4952 Fernendo Calscience Conner S-day	LAB I.D.	25	X	łc	j Sc. 1		1 30	15 15	E 23	hef ,	gnature)		gnature)	onature)
E TETR	1	PROJECT NAME: JOB NUMBER: PROJECT MANAGER: LABORATORY: SHIPMENT METHOD: TURNAROUND TIME: DISPOSAL:	BAS Sample I.D.	10-4 hai	B-4, P-2@5'	B-4, P-3@10'	B-4, P-4@15	B-4, NOC-105'	B-4, NOC-2@101	B-4, NOC-3015'	B-4, VOC-4@20	M.S.M.	RECINQUISHED BY: (Agenature)	Alg les.	RELINQÚISHEĎ BY.∕Signature)	RELINOU/ISHED_BY: (Signature)

(272) Page Sof S															COMMENTS:		Page	e 75 c	of 78		b report Copy 1 – Lab Copy 2 – Originator
CHAIN OF CUSTODY	0,	8121) (181) (181) (181) (1818) (1818)	 АТИОЗ = О+Х О+Х О+Х 	5(613) 2,47 2,47	Att Ball DON		××× ××	×	× ×					XX	SAMPLE CONDITION (Lab Initials)	Signature) Shipping Container:	B	CEIVED BY: (Skinature) Integrity	Sealed		((909) 860-8017 Original to accompany lab report
СН		1		[]	MATRIX	Sei 1							-	Ī		RECEIVED BY: (Signature)	N A A	RECEIVED BY	_	RECEIVED BY: (Signature)	60-7777 FA)
CH BAS	PROJECT INFORMATION	Envirage Crest Park 1971-4552-0101 Fernando Cuenca	. y 5	ul [∑urteturn []] Pick Up [DATE TIME	9/78/16 1310	1 13:30	1345	1410	1330	134S	1410	SHHI T			9/30/10 1030	9/30/11 1400	DATE/TIME		DATE/TIME	d Bar, CA 91765 (909) 8
TETRA TECH BAS	PROJECT IN	PROJECT NAME: JOB NUMBER: PROJECT MANAGER: LABORATORY: (AICAN		DISPOSAL: Lab Disposal [X	BAS LAB Sample I.D. 1.D.	B-5, P-1@1' 33	B-5, P-20 5' 34	B-5, P-3010 35	B-S, P-4@15' 36	B-5, NOC-1051 37	B-5, VOC-2001 38	B-5, NUC-3015' 39	B-5, VOC-4@201 40	TS 41	$\int D I I d$	REHNQUISHED BY: (Signature)	And I.	REFINQUISHED BY: (Signature)		RELINQUISHED BY: (Signature)	1360 Valley Vista Drive, Diamond Bar, CA 91765 (909) 860-7777 FAX (909) 860-8017 Return to (

Calscience	SAMPLE RECEIPT	CHECKLIST	1 - 1, -< - (COOLERO	F
LIENT: TETRA				ате: 09 / <u>30</u> /	
TEMPERATURE: (Criteria: 0.0°C – 6. Thermometer ID: SC2A (CF: 0.0°C); T □ Sample(s) outside temperature o □ Sample(s) outside temperature o □ Sample(s) received at ambient temp Ambient Temperature: □ Air □ Filter	emperature (w/o CF): <u>3</u> riteria (PM/APM contacted b riteria but received on ice/ch perature; placed on ice for tr	7°C (w/ CF): _≦ oy:) nilled on same day o		E Blank □ Samp Checked by: <u>6</u>	
CUSTODY SEAL: Cooler	□ Present but Not Intact □ Present but Not Intact	Not Present	□ N/A □ N/A	Checked by: Checked by:	VP 069
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) COC document(s) received complete Sampling date Sampling time No analysis requested Not re Sampler's name indicated on COC Sample container label(s) consistent w Sample container(s) intact and in good Proper containers for analyses request Sufficient volume/mass for analyses re Samples received within holding time Aqueous samples for certain analy pH Residual Chlorine Di Proper preservation chemical(s) noted Unpreserved aqueous sample(s) re Volatile Organics Total Metal Container(s) for certain analysis free of Volatile Organics Dissolved Carbon Dioxide (SM 4500)	e	containers ned date □ No relir te holding time d Oxygen ntainer Ived Oxygen (SM 45	nquished tím 104 9/3 500)		
Tedlar [™] bag(s) free of condensation CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAh □ 125PBznna □ 250AGB □ 250CG □ 500PB □ 1AGB □ 1AGBna ₂ □ 1 Solid: □ 4ozCGJ □ 8ozCGJ □ 16oz Air: □ Tedlar [™] □ Canister □ Sorbe Container: A = Amber, B = Bottle, C = Cle Preservative: b = buffered, f = filtered, h =	a₂ □ 100PJ □ 100PJna₂ B □ 250CGBs □ 250PB I AGBs □ 1PB □ 1PBna □ CGJ □ Sleeve () □ nt Tube □ PUF □ ear, E = Envelope, G = Glass, J	(Trip Blar □ 125AGB □ 125A □ 250PBn □ 500AC □ EnCores [®] () Other Matrix (= Jar, P = Plastic, and	hk Lot Num GBh □ 125 GB □ 500A(□ TerraCores): d Z = Ziploc/R	ber: <u>/60926</u> GGBp □ 125PB GJ □ 500AGJs 	<u>593</u>

🔅 eurofins	WORK ORDER N	IUMBER:	Pag 16–0	je 77 of 7 9- <u>え</u>	8 276
Calscience SAMPLE RECEIPT	CHECKLIST	C	OOLER	2 o	F
CLIENT: TETRA TECH		DA	te: 09	1 <u>30</u> 1	2016
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sedim Thermometer ID: SC2A (CF: 0.0°C); Temperature (w/o CF):3.0 □ Sample(s) outside temperature criteria (PM/APM contacted b □ Sample(s) outside temperature criteria but received on ice/ch □ Sample(s) received at ambient temperature; placed on ice for tra Ambient Temperature: □ Air □ Filter	9°C (w/ CF): <u>3.9</u> by:) hilled on same day of s			□ Samp ed by: _Ç	
CUSTODY SEAL:Cooler□ Present and Intact□ Present but Not IntactSample(s)□ Present and Intact□ Present but Not Intact	1 J	□ N/A □ N/A		ed by: <u>6</u> ed by: <u>10</u>	
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of c	····			No □	N/A
□ No analysis requested □ Not relinquished □ No relinquish Sampler's name indicated on COC Sample container label(s) consistent with COC	ned date 🛛 No relinqu				
Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested		· · · · · · · · · · · · · · · · · · ·	Þ Ø		
Samples received within holding time Aqueous samples for certain analyses received within 15-minut pH Residual Chlorine Dissolved Sulfide Dissolved Proper preservation chemical(s) noted on COC and/or sample con	e holding time d Oxygen				ں م
Unpreserved aqueous sample(s) received for certain analyses Uolatile Organics I Total Metals I Dissolved Metals Container(s) for certain analysis free of headspace					ø
 □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissol □ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Ferrous Iron (SM 3500) □ Ferrous Iron (SM 3500) 	lydrogen Sulfide (Hach	י ו)			, R
CONTAINER TYPE: Aqueous: VOA VOAh VOAna2 100PJ 100PJna2 I 125PBznna 250AGB 250CGB 250CGBs 250PB I 500PB 1AGB 1AGBna2 1AGBs 1PB 1PBna I Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () E	250PBn □ 500AGB	Bh □ 125A □ 500AG、 □	GBp □ J □ 500	125PB AGJ s	
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na s = H ₂ SO ₄ , u = ultra-pure, znna = Zn (CH ₃ CO ₂) ₂ + NaOH	_ Other Matrix (= Jar, P = Plastic, and Z): E = Ziploc/Res] sealable E d/Check	□ 3ag	069

🔹 eurofins

a la summer a la sum de la sum

Calscience

WORK ORDER NUMBER: 16-09-

SAMPLE ANOMALY REPORT

DATE: 09 / 30 / 2016

. N

. .

	, CONTAIN			s.		Commer	ots			
	s) NOT RECE									
• •	s) received bu					-				
	time expired (I				lveie)	W				
-	int sample am									
	•		•	alysis (list and	aiy 515/					
	r container(s)									
, .	r preservative			analysis and r	atific lab)					
	ervative noted		r label (list a	analysis and r	iotily lab)					
•	container(s) no			t	h -= i=)					
	mple label(s)				iysis)					
·	mple label(s)	do not mai	tch COC (c	omment)		(-41) 1	Received	4 vials	w HCI	instead
•	ct information								1101	VIISCOU
	t sample ID					of 2				
	bling date and									
•	per of containe									
•	ested analysis									
□ Sample	container(s) co	ompromise	ed (commer	nt)		: :				
Broke	en									
	r present in sa									
	le container(s) compron	nised (comr	nent)					<u>, , , , , , , , , , , , , , , , , , , </u>	
Flat						······				
□ Very	low in volume									
	ing (not transf									
🗆 Leak	ing (transferre	d into ECI	Tedlar™ ba	ags*)						
🗆 Leak	ing (transferre	d into clier	nt's Tedlar™	[#] bags*)						
* Transfer	red at client's requ	iest.								
MISCELL	ANEOUS: (D)escribe)				Comments				
HEADSP	ACE:									
(Containers wi	th bubble > 6 mm	or ¼ inch for	volatile organi	c or dissolved gas	s analysis)	(Containers w	ith bubble for othe	r analysis)		
ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested /	Analysis
41	D	4								
						:				
		l						<u> </u>	<u> </u>	
Comments	:									• • •
						:			Reported by: <u> </u>	
** Record the	total number of co	ntainers (i.e.	, vials or bottle	s) for the affected	sample.			F	Reviewed by:	01/

🛟 eurofins

Calscience

Supplemental Report 1

Additional requested analyses are reported as a stand-alone report.

WORK ORDER NUMBER: 16-09-2276

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Tetra Tech, Inc. Client Project Name: Carriage Crest Park Attention: Fernando Cuenca 1360 Valley Vista Drive Diamond Bar, CA 91765-1111

Vikos Patel

Approved for release on 11/09/2016 by: Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🛟 eurofins

Calscience

Contents

-	ect Name: er Number:	Carriage Crest Park 16-09-2276	
1	Work Ord	der Narrative	3
2	Sample S	Summary	4
3	Detection	ns Summary	5
4		mple Data	6 6
5	5.1 MS/	Control Sample Data	15 15 16
6	Sample A	Analysis Summary	17
7	Glossary	of Terms and Qualifiers	18
8	Chain-of-	Custody/Sample Receipt Form.	19

Work Order: 16-09-2276

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/30/16. They were assigned to Work Order 16-09-2276.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

eurofins Calscience

Client: Tetra Tech, Inc.		Work Order:	16-09-2276
1360 Valley Vista Dr	ive	Project Name:	Carriage Crest Park
Diamond Bar, CA 91	765-1111	PO Number:	197-4552-0101
		Date/Time Received:	09/30/16 14:00
		Number of Containers:	92
Attn: Fernando Cuenca			

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
B-1,P-3@10'	16-09-2276-3	09/27/16 09:30	1	Solid
B-1,P-4@15'	16-09-2276-4	09/27/16 09:45	1	Solid
B-3,P-3@10'	16-09-2276-19	09/28/16 08:00	1	Solid
B-3,P-4@15'	16-09-2276-20	09/28/16 08:30	1	Solid
B-4,P-3@10'	16-09-2276-27	09/28/16 11:40	1	Solid
B-4,P-4@15'	16-09-2276-28	09/28/16 12:10	1	Solid
B-5,P-3@10'	16-09-2276-35	09/28/16 13:45	1	Solid
B-5,P-4@15'	16-09-2276-36	09/28/16 14:10	1	Solid

Return to Contents

Client:	Tetra Tech, Inc. 1360 Valley Vista Drive Diamond Bar, CA 91765-1	111		Work Order Project Nar Received:		16-09-2276 Carriage Crest Park 09/30/16	
Attn:	Fernando Cuenca						Page 1 of 1
Client Sa Anal	ampleID yte	<u>Result</u>	Qualifiers	RL	<u>Units</u>	<u>Method</u>	Extraction
B-3,P-3@ 4.4'-[210' (16-09-2276-19) חחר	8.0	ET	4.9	ug/kg	EPA 8081A	EPA 3545
4,4'-[6.0	ET	4.9	ug/kg ug/kg	EPA 8081A	EPA 3545

Subcontracted analyses, if any, are not included in this summary.

* MDL is shown

Return to Contents

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 1 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1,P-3@10'	16-09-2276-3-A	09/27/16 09:30	Solid	GC 41	11/04/16	11/07/16 12:52	161104L09
Parameter		<u>Result</u>	RL		DF	Qua	lifiers
Aldrin		ND	5.0		1.00	ET	
Alpha-BHC		ND	10		1.00	ET	
Beta-BHC		ND	5.0		1.00	ET	
Chlordane		ND	50		1.00	ET	
4,4'-DDD		ND	5.0		1.00	ET	
4,4'-DDE		ND	5.0		1.00	ET	
4,4'-DDT		ND	5.0		1.00	ET	
Delta-BHC		ND	10		1.00	ET	
Dieldrin		ND	5.0		1.00	ET	
Endosulfan I		ND	5.0		1.00	ET	
Endosulfan II		ND	5.0		1.00	ET	
Endosulfan Sulfate		ND	5.0		1.00	ET	
Endrin		ND	5.0		1.00	ET	
Endrin Aldehyde		ND	5.0		1.00	ET	
Endrin Ketone		ND	5.0		1.00	ET	
Gamma-BHC		ND	5.0		1.00	ET	
Heptachlor		ND	5.0		1.00	ET	
Heptachlor Epoxide		ND	10		1.00	ET	
Methoxychlor		ND	5.0		1.00	ET	
Toxaphene		ND	100	0	1.00	ET	
Surrogate		<u>Rec. (%)</u>	Co	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		97	24-	168			
2,4,5,6-Tetrachloro-m-Xylene		83	25-	145			

Calscience

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 2 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1,P-4@15'	16-09-2276-4-A	09/27/16 09:45	Solid	GC 41	11/04/16	11/07/16 13:07	161104L09
Parameter		<u>Result</u>	RL	-	DF	Qua	<u>lifiers</u>
Aldrin		ND	5.0)	1.00	ET	
Alpha-BHC		ND	10		1.00	ET	
Beta-BHC		ND	5.0)	1.00	ET	
Chlordane		ND	50		1.00	ET	
4,4'-DDD		ND	5.0)	1.00	ET	
4,4'-DDE		ND	5.0)	1.00	ET	
4,4'-DDT		ND	5.0)	1.00	ET	
Delta-BHC		ND	10		1.00	ET	
Dieldrin		ND	5.0)	1.00	ET	
Endosulfan I		ND	5.0)	1.00	ET	
Endosulfan II		ND	5.0)	1.00	ET	
Endosulfan Sulfate		ND	5.0)	1.00	ET	
Endrin		ND	5.0)	1.00	ET	
Endrin Aldehyde		ND	5.0)	1.00	ET	
Endrin Ketone		ND	5.0)	1.00	ET	
Gamma-BHC		ND	5.0)	1.00	ET	
Heptachlor		ND	5.0)	1.00	ET	
Heptachlor Epoxide		ND	10		1.00	ET	
Methoxychlor		ND	5.0)	1.00	ET	
Toxaphene		ND	10	0	1.00	ET	
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		106	24	-168			
2,4,5,6-Tetrachloro-m-Xylene		92	25	-145			

Return to Contents

Calscience

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 3 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3,P-3@10'	16-09-2276-19-A	09/28/16 08:00	Solid	GC 41	11/04/16	11/07/16 13:22	161104L09
Parameter		Result	<u>R</u>	L	DF	Qual	<u>ifiers</u>
Aldrin		ND	4.	9	1.00	ET	
Alpha-BHC		ND	9.	9	1.00	ET	
Beta-BHC		ND	4.	9	1.00	ET	
Chlordane		ND	49	Э	1.00	ET	
4,4'-DDD		8.0	4.	9	1.00	ET	
4,4'-DDE		6.0	4.	9	1.00	ET	
4,4'-DDT		ND	4.	9	1.00	ET	
Delta-BHC		ND	9.	9	1.00	ET	
Dieldrin		ND	4.	9	1.00	ET	
Endosulfan I		ND	4.	9	1.00	ET	
Endosulfan II		ND	4.	9	1.00	ET	
Endosulfan Sulfate		ND	4.	9	1.00	ET	
Endrin		ND	4.	9	1.00	ET	
Endrin Aldehyde		ND	4.	9	1.00	ET	
Endrin Ketone		ND	4.	9	1.00	ET	
Gamma-BHC		ND	4.	9	1.00	ET	
Heptachlor		ND	4.	9	1.00	ET	
Heptachlor Epoxide		ND	9.	9	1.00	ET	
Methoxychlor		ND	4.	9	1.00	ET	
Toxaphene		ND	99	9	1.00	ET	
Surrogate		<u>Rec. (%)</u>	C	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		106	24	4-168			
2,4,5,6-Tetrachloro-m-Xylene		90	25	5-145			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 4 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3,P-4@15'	16-09-2276-20-A	09/28/16 08:30	Solid GC 41		11/04/16	11/07/16 13:37	161104L09
Parameter		<u>Result</u>	RL	=	DF	Qual	ifiers
Aldrin		ND	5.0	D	1.00	ET	
Alpha-BHC		ND	10	1	1.00	ET	
Beta-BHC		ND	5.0	D	1.00	ET	
Chlordane		ND	50	1	1.00	ET	
4,4'-DDD		ND	5.0	D	1.00	ET	
4,4'-DDE		ND	5.0	D	1.00	ET	
4,4'-DDT		ND	5.0	D	1.00	ET	
Delta-BHC		ND	10	1	1.00	ET	
Dieldrin		ND	5.0	D	1.00	ET	
Endosulfan I		ND	5.0	D	1.00	ET	
Endosulfan II		ND	5.0	D	1.00	ET	
Endosulfan Sulfate		ND	5.0	D	1.00	ET	
Endrin		ND	5.0	D	1.00	ET	
Endrin Aldehyde		ND	5.0	D	1.00	ET	
Endrin Ketone		ND	5.0	D	1.00	ET	
Gamma-BHC		ND	5.0	D	1.00	ET	
Heptachlor		ND	5.0	D	1.00	ET	
Heptachlor Epoxide		ND	10	1	1.00	ET	
Methoxychlor		ND	5.0	D	1.00	ET	
Toxaphene		ND	10	0	1.00	ET	
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		101	24	-168			
2,4,5,6-Tetrachloro-m-Xylene		93	25	-145			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 5 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix Instrument		Date Prepared	Date/Time Analyzed	QC Batch ID
B-4,P-3@10'	16-09-2276-27-A	09/28/16 11:40	Solid GC 41		11/04/16	11/07/16 13:52	161104L09
Parameter		<u>Result</u>	<u>RL</u>		DF	Qual	lifiers
Aldrin		ND	5.0		1.00	ET	
Alpha-BHC		ND	10		1.00	ET	
Beta-BHC		ND	5.0		1.00	ET	
Chlordane		ND	50		1.00	ET	
4,4'-DDD		ND	5.0		1.00	ET	
4,4'-DDE		ND	5.0		1.00	ET	
4,4'-DDT		ND	5.0		1.00	ET	
Delta-BHC		ND	10		1.00	ET	
Dieldrin		ND	5.0		1.00	ET	
Endosulfan I		ND	5.0		1.00	ET	
Endosulfan II		ND	5.0		1.00	ET	
Endosulfan Sulfate		ND	5.0		1.00	ET	
Endrin		ND	5.0		1.00	ET	
Endrin Aldehyde		ND	5.0		1.00	ET	
Endrin Ketone		ND	5.0		1.00	ET	
Gamma-BHC		ND	5.0		1.00	ET	
Heptachlor		ND	5.0		1.00	ET	
Heptachlor Epoxide		ND	10		1.00	ET	
Methoxychlor		ND	5.0		1.00	ET	
Toxaphene		ND	100)	1.00	ET	
Surrogate		<u>Rec. (%)</u>	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		122	24-	168			
2,4,5,6-Tetrachloro-m-Xylene		73	25-7	145			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 6 of 9

Client Sample Number Date/Time Matrix Date Prepared Date/Time QC Batch ID Lab Sample Instrument Number Collected Analyzed 11/07/16 14:07 09/28/16 12:10 B-4,P-4@15' 16-09-2276-28-A GC 41 161104L09 Solid 11/04/16 Parameter Result <u>RL</u> <u>DF</u> Qualifiers Aldrin ND 5.0 ΕT 1.00 Alpha-BHC ND 1.00 ΕT 9.9 Beta-BHC ND ΕT 5.0 1.00 ND ΕT Chlordane 50 1.00 4,4'-DDD ND 5.0 1.00 ΕT 4,4'-DDE ND 5.0 1.00 ΕT 4,4'-DDT ND 5.0 1.00 ΕT Delta-BHC 9.9 ET ND 1.00 Dieldrin ND 5.0 1.00 EΤ Endosulfan I ND 5.0 1.00 ΕT Endosulfan II ND 5.0 1.00 ET Endosulfan Sulfate ND 5.0 1.00 ΕT Endrin ND 5.0 1.00 EΤ Endrin Aldehyde ND 5.0 1.00 ET Endrin Ketone ND 5.0 1.00 ΕT Gamma-BHC ND 5.0 1.00 EΤ ΕT Heptachlor ND 5.0 1.00 Heptachlor Epoxide ND ΕT 9.9 1.00 Methoxychlor ND 5.0 1.00 ΕT Toxaphene ND 99 1.00 ET Surrogate Rec. (%) **Control Limits Qualifiers** Decachlorobiphenyl 87 24-168 2,4,5,6-Tetrachloro-m-Xylene 50 25-145

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 7 of 9

Client Sample Number

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5,P-3@10'	16-09-2276-35-A	09/28/16 13:45	Solid GC 41		11/04/16	11/07/16 14:22	161104L09
Parameter		Result	<u>RL</u>		DF	Qual	lifiers
Aldrin		ND	5.0		1.00	ET	
Alpha-BHC		ND	10		1.00	ET	
Beta-BHC		ND	5.0		1.00	ET	
Chlordane		ND	50		1.00	ET	
4,4'-DDD		ND	5.0		1.00	ET	
4,4'-DDE		ND	5.0		1.00	ET	
4,4'-DDT		ND	5.0		1.00	ET	
Delta-BHC		ND	10		1.00	ET	
Dieldrin		ND	5.0		1.00	ET	
Endosulfan I		ND	5.0		1.00	ET	
Endosulfan II		ND	5.0		1.00	ET	
Endosulfan Sulfate		ND	5.0		1.00	ET	
Endrin		ND	5.0		1.00	ET	
Endrin Aldehyde		ND	5.0		1.00	ET	
Endrin Ketone		ND	5.0		1.00	ET	
Gamma-BHC		ND	5.0		1.00	ET	
Heptachlor		ND	5.0		1.00	ET	
Heptachlor Epoxide		ND	10		1.00	ET	
Methoxychlor		ND	5.0		1.00	ET	
Toxaphene		ND	100)	1.00	ET	
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		104	24-	168			
2,4,5,6-Tetrachloro-m-Xylene		67	25-	145			

Return to Contents

Calscience

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 8 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5,P-4@15'	16-09-2276-36-A	09/28/16 14:10	Solid	GC 41	11/04/16	11/07/16 14:37	161104L09
Parameter		<u>Result</u>	RL		DF	Qual	lifiers
Aldrin		ND	5.0		1.00	ET	
Alpha-BHC		ND	10		1.00	ET	
Beta-BHC		ND	5.0		1.00	ET	
Chlordane		ND	50		1.00	ET	
4,4'-DDD		ND	5.0		1.00	ET	
4,4'-DDE		ND	5.0		1.00	ET	
4,4'-DDT		ND	5.0		1.00	ET	
Delta-BHC		ND	10		1.00	ET	
Dieldrin		ND	5.0		1.00	ET	
Endosulfan I		ND	5.0		1.00	ET	
Endosulfan II		ND	5.0		1.00	ET	
Endosulfan Sulfate		ND	5.0		1.00	ET	
Endrin		ND	5.0		1.00	ET	
Endrin Aldehyde		ND	5.0		1.00	ET	
Endrin Ketone		ND	5.0		1.00	ET	
Gamma-BHC		ND	5.0		1.00	ET	
Heptachlor		ND	5.0		1.00	ET	
Heptachlor Epoxide		ND	10		1.00	ET	
Methoxychlor		ND	5.0		1.00	ET	
Toxaphene		ND	100)	1.00	ET	
Surrogate		<u>Rec. (%)</u>	Co	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		133	24-	168			
2,4,5,6-Tetrachloro-m-Xylene		94	25-	145			

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
	Units:	ug/kg
Project: Carriage Crest Park		Page 9 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-537-2550	N/A	Solid	GC 41	11/04/16	11/07/16 12:07	161104L09
Parameter		Result	R	<u>L</u>	DF	Qua	lifiers
Aldrin		ND	5	.0	1.00		
Alpha-BHC		ND	1	0	1.00		
Beta-BHC		ND	5	.0	1.00		
Chlordane		ND	5	0	1.00		
4,4'-DDD		ND	5	.0	1.00		
4,4'-DDE		ND	5	.0	1.00		
4,4'-DDT		ND	5	.0	1.00		
Delta-BHC		ND	1	0	1.00		
Dieldrin		ND	5	.0	1.00		
Endosulfan I		ND	5	.0	1.00		
Endosulfan II		ND	5	.0	1.00		
Endosulfan Sulfate		ND	5	.0	1.00		
Endrin		ND	5	.0	1.00		
Endrin Aldehyde		ND	5	.0	1.00		
Endrin Ketone		ND	5	.0	1.00		
Gamma-BHC		ND	5	.0	1.00		
Heptachlor		ND	5	.0	1.00		
Heptachlor Epoxide		ND	1	0	1.00		
Methoxychlor		ND	5	.0	1.00		
Toxaphene		ND	1	00	1.00		
Surrogate		<u>Rec. (%)</u>	C	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		110	2	4-168			
2,4,5,6-Tetrachloro-m-Xylene		95	2	5-145			

Return to Contents

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
Project: Carriage Crest Park		Page 1 of 1

Project: Carriage Crest Park

Quality Control Sample ID	Туре		Matrix	Inst	trument	Date Prepar	ed Date Ana	lyzed	MS/MSD Ba	tch Number
B-5,P-4@15'	Sample		Solid	GC	41	11/04/16	11/07/16	14:37	161104S09	
B-5,P-4@15'	Matrix Spike		Solid	GC	41	11/04/16	11/07/16	12:22	161104S09	
B-5,P-4@15'	Matrix Spike	Duplicate	Solid	GC	41	11/04/16	11/07/16	12:37	161104S09	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	MSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Aldrin	ND	25.00	23.06	92	23.84	95	50-135	3	0-25	
Alpha-BHC	ND	25.00	22.20	89	22.92	92	50-135	3	0-25	
Beta-BHC	ND	25.00	24.82	99	25.01	100	50-135	1	0-25	
4,4'-DDD	ND	25.00	31.29	125	30.88	124	50-135	1	0-25	
4,4'-DDE	ND	25.00	34.38	138	35.04	140	50-135	2	0-25	3
4,4'-DDT	ND	25.00	31.40	126	32.52	130	50-135	4	0-25	
Delta-BHC	ND	25.00	25.34	101	25.47	102	50-135	1	0-25	
Dieldrin	ND	25.00	27.15	109	26.95	108	50-135	1	0-25	
Endosulfan I	ND	25.00	23.64	95	23.52	94	50-135	1	0-25	
Endosulfan II	ND	25.00	31.48	126	30.65	123	50-135	3	0-25	
Endosulfan Sulfate	ND	25.00	30.80	123	29.75	119	50-135	3	0-25	
Endrin	ND	25.00	29.53	118	29.22	117	50-135	1	0-25	
Endrin Aldehyde	ND	25.00	28.41	114	27.29	109	50-135	4	0-25	
Gamma-BHC	ND	25.00	24.10	96	24.57	98	50-135	2	0-25	
Heptachlor	ND	25.00	23.40	94	24.30	97	50-135	4	0-25	
Heptachlor Epoxide	ND	25.00	24.89	100	24.96	100	50-135	0	0-25	
Methoxychlor	ND	25.00	31.77	127	30.95	124	50-135	3	0-25	

🛟 eurofins

Tetra Tech, Inc.	Date Received:	09/30/16
1360 Valley Vista Drive	Work Order:	16-09-2276
Diamond Bar, CA 91765-1111	Preparation:	EPA 3545
	Method:	EPA 8081A
Project: Carriage Crest Park		Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
099-12-537-2550	LCS	Solid	GC 41	11/04/16	11/07/16 11:52	161104L09	
Parameter	<u>Spike</u> A	Added Conc.	Recovered LCS	<u>%Rec. %R</u>	ec. CL ME	<u>E CL</u>	<u>Qualifiers</u>
Aldrin	25.00	21.85	87	50-	135 36	-149	
Alpha-BHC	25.00	22.67	91	50-	135 36	-149	
Beta-BHC	25.00	21.53	86	50-	135 36	-149	
4,4'-DDD	25.00	22.11	88	50-	135 36	-149	
4,4'-DDE	25.00	24.14	97	50-	135 36	-149	
4,4'-DDT	25.00	23.79	95	50-	135 36	-149	
Delta-BHC	25.00	22.76	91	50-	135 36	-149	
Dieldrin	25.00	23.36	93	50-	135 36	-149	
Endosulfan I	25.00	22.42	90	50-	135 36	-149	
Endosulfan II	25.00	24.76	99	50-	135 36	-149	
Endosulfan Sulfate	25.00	23.64	95	50-	135 36	-149	
Endrin	25.00	24.10	96	50-	135 36	-149	
Endrin Aldehyde	25.00	23.30	93	50-	135 36	-149	
Gamma-BHC	25.00	23.41	94	50-	135 36	-149	
Heptachlor	25.00	23.40	94	50-	135 36	-149	
Heptachlor Epoxide	25.00	22.59	90	50-	135 36	-149	
Methoxychlor	25.00	22.99	92	50-	135 36	-149	

Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Calscience

Work Order: 16-09-2276Page 1 of 1MethodExtractionChemist IDInstrumentAnalytical LocationEPA 8081AEPA 3545669GC 411

Return to Contents

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Definition

Glossary of Terms and Qualifiers

Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7

- Surrogate recovery above the acceptance limit.
- В Analyte was present in the associated method blank.
- ΒU Sample analyzed after holding time expired.

Calscience

See applicable analysis comment. Less than the indicated value.

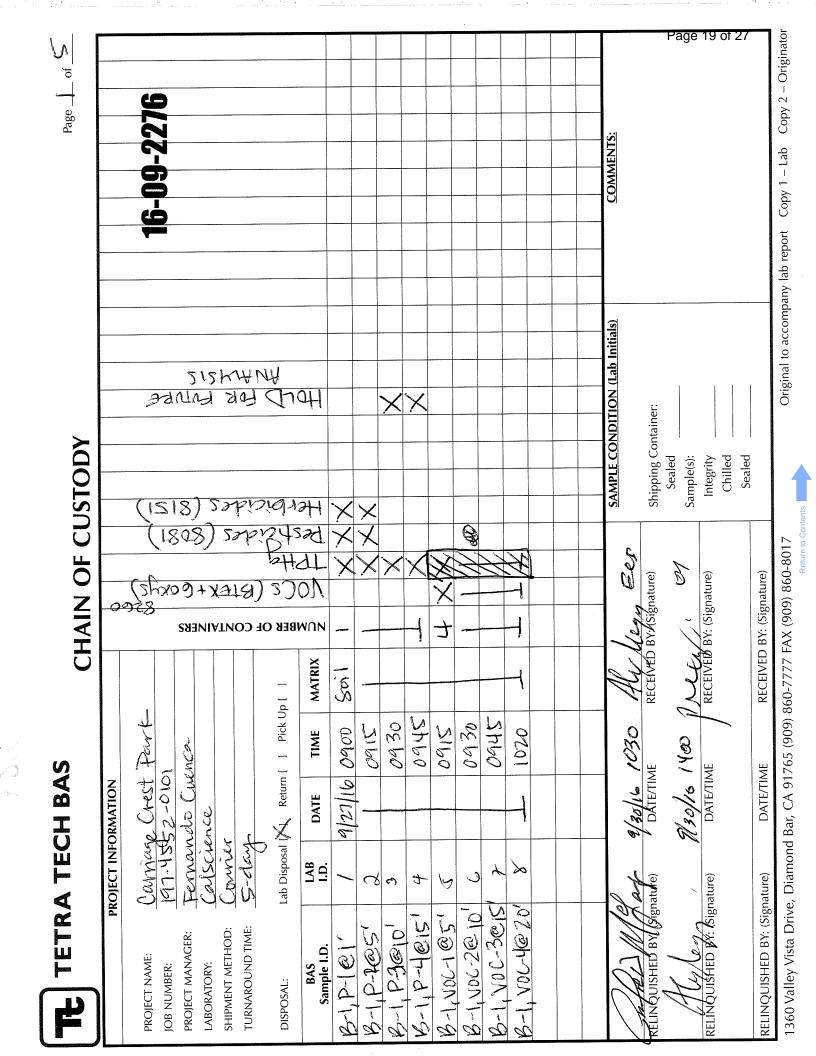
Greater than the indicated value.

- ΒV Sample received after holding time expired.
- CI See case narrative.
- F Concentration exceeds the calibration range.
- ET Sample was extracted past end of recommended max. holding time.
- HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
- HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
- HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
- Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is J estimated.
- JA Analyte positively identified but quantitation is an estimate.
- LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME
- ND Parameter not detected at the indicated reporting limit.
- Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- Х % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.


Work Order: 16-09-2276

Qualifiers

*

< >

Page 1 of 1

(2276) Page Z of S			COMMENTS	lab report Copy 1 – Lab Copy 2 – Originator
VIN OF CUSTODY		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAMPLE CONDITION Shipping Container: Sealed Sample(s): Integrity Chilled Sealed	(909) 860-8017 Original to accompany lab report
CHAI			RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature)	360-7777 FAX
CH BAS	ORMATION	Cprintinge Creat Park 1971 - 4552 - 0101 1971 - 4552 - 0101 1971 - 4552 - 0101 Ferchaudro Cuenca Cariscievce Cariscievce Coulden Coulden S DAy Return 1 S DAy Internet Iab Disposal (X) Return 1 Pick up 1 Pick up 1 I.D. Pick up 1 I.D. 1220 I.P. 1220 I.P. 1235 I.V. 1215 I.V. 1215 I.V. 1235 I.V. 1235 I.V. 1315	9/20/10 0030 DATE/TIME 9/30/10 1900 DATE/TIME DATE/TIME	1360 Valley Vista Drive, Diamond Bar, CA 91765 (909) 860-7777 FAX (909) 860-8017 Return to
A TEC	PROJECT INFORMATION		Start shature) gnature)	'e, Diamond
TE TECH BAS	P	PROJECT NAME: JOB NUMBER: PROJECT MANAGER: LABORATORY: SHIPMENT METHOD: TURNAROUND TIME: DISPOSAL: BAS BAS BAS BAS BAS BAS BAS BAS BAS BAS	RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)	1360 Valley Vista Driv

Page $\overline{\mathcal{Z}}$ of $\overline{\mathcal{S}}$			Copy 2 - Originator
Bed Her			Copy 1 – Lab Co
			Original to accompany lab report
YOO'		SISMUNU XX MORDERE	SAMPLE CONDITION (Lab Initials) Sample(s): Integrity Chilled Sealed Sample(s): Integrity Chilled Sealed Sealed Original to acco
CUST		(1518) sopragrafi × × (3) (1808) soprafised × ×	
IN OF CUSTODY	07:	- X X X L LH	ignature) ignature) ignature) ignature)
CHAI			Kur kun Ee RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature)
Ŭ		Pick Up []	RECEIV RECEIV RECEIV
S			0830 0830 0830 0830 Ив Ив Ив Ив Ив Ив Ив Ив Ив Ив
CH BA	PROJECT INFORMATION		9730 9730 9730 9730 9730 9730 9730 9730 9730 9740 97500 9750 97500 97500 97500 97500 97500 97500 97500 975
A TE	OJECT INF	Carriage 197-4522 Fernando Calernando Seder 13 Dal (X) F 13 Dal 10. Dal 13 Dal 14 Dal	5 34 5 35 5 34 5 grature) 5 ignature) 5 ignature) 5 ignature)
TE TEA TECH BAS	PR	PROJECT NAME: JOB NUMBER: PROJECT MANAGER: LABORATORY: SHIPMENT METHOD: TURNAROUND TIME: TURNAROUND TIME: DISPOSAL: DISPOSAL: BAS Sample I.D. B-3, P-2 & 5' B-3, P-4 & 15' B-3, P-4 & 15' B-3, VOC-1 & 5'	B-3 VIL D D Q A B-3 VIL ELS D D Q A B-3 Voc-4 E20 D D Q A B-3 Voc-4 E20 D D D RELIMOUISHED BY/Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)

- 1. m. 1

٥														Page	22 of 27	
(22H) Page 4)											COMMENTS:				
CUSTODY			1044			×.	×					SAMPLE CONDITION (Lab Initials)	Shinoing Container:	Sample(s):	Integrity Chilled Sealed	
CHAIN OF CUS	02	P. (19475 (8121) UNX52 (8081) 2 (RLEX + C OKAZ) 83 2 (RLEX + C OKAZ) 83	101 101 101	× × × × ×	X X X X -	×	× 1	XX T					RECEIVED BY (Signature)	(Ch)	BY: Kignature)	RECEIVED BY: (Signature)
CI		[] d	MATRIX	lias							-	~	RECEIVED	M		RECEIVED
S		St Perk -0101 Mencal	TIME	1100	0711	ahli	1210	1120	1140	1210	1230	 	1030 ME	Colti	ME	ME
H BA	ORMATION	× 1 0 3 1 2	DATE	91/28/10							-	,	9/30/14 1030 DATE/TIME	Cor1 =1/02/1	^v DATE/TII	DATE/TIME
A TEC	PROJECT INFORMATION	Corner Calscience Calscience S-day Lab Disposal X	LAB I.D.	25	z	łc	Sc		30	15	25				nature)	nature)
TETRA TECH BAS	Id	PROJECT NAME: JOB NUMBER: PROJECT MANAGER: LABORATORY: SHIPMENT METHOD: TURNAROUND TIME: DISPOSAL:	BAS Sample I.D.	B-4, P-1@1'	Bulpzes	B-4, P-3@10'	B-4, P-4@151	B-4, NOC-105'	B-4, NOC-2@101	B-4, NOC-3015'	B-4, VOC-4@201	V.1 (N)	HEINOUSHED BY: (Stenature)	Hey les	RELINQÚISHEĎ BY:∕∫Sí g nature)	RELINOUISHED BY: (Signature)

(2276) Page Sof S														COMMENTS:		Page 2	23 of 2	/	ab report Copy 1 – Lab Copy 2 – Originator
AIN OF CUSTODY	0	SI ZI) (121) (180) (180) (180) (180) (180) (180) (180)	3) S74 3) S7 3) S7 3) S7	518)= 194 264 264 264	10H 2H 3Z 10L SJOA								XX	SAMPLE CONDITION (Lab Initials)	Shi Shi	Sample(s):	<u> </u>	: (Signature) Sealed	(909) 860-8017 Original to accompany lab report Return to Contents
CHAI					MATRIX	lias				9 444 19 49 19 19 19 19 19 19 19 19 19 19 19 19 19		_	Ā	V V	RECEIVED BY: (Signature)	NN		RECEIVED BY: (Signature)	60-7777 FA)
CH BAS	PROJECT INFORMATION	Jerniage Crest Park 197-4552-0101 Fernando Cuenca	ar ounce	↓ Ll [X] Return [] Pick Up [DATE TIME		1330	1545	0141	SHE1	01/11	Shhi T			9/30/10 0030 UDATE/TIME	9/30/16 1400	DATE/TIME	DATE/TIME	1360 Valley Vista Drive, Diamond Bar, CA 91765 (909) 860-7777 FAX (909) 860-8017 Return to 4
TETRA TECH BAS	PROJECT IN	E: C			BAS LAB Sample I.D.	1@1' 33	Ìo-		B-S. M. Hals 3	B-5, VOC 2010 38		B-5, VOC-4@20 40	41	N. Mall	RELINQUISHED BY: (Slendature)	ling	REÉINQUISHE D B Y: (Signature)	RELINQUISHED BY: (Signature)	y Vista Drive, Diamon
F		PROJECT NAME: JOB NUMBER: PROJECT MANAGER:	LABUKAIUKY: SHIPMENT METHOD: TURNAROUND TIME:	DISPOSAL:	B. Samp	B-5 P-101	B-5, P-10 5	B-5 1-30 10	B-5. 10-100	2 2 2 2 2 2	18-5, V	B-S, VO	Į.		RELITIQUE	Ner A	Relinquis	RELINQUIS	1360 Valle

Calscience	SAMPLE RECEIPT			: 16–09– <u>2</u> COOLER <u>/</u> OF	
CLIENT: <u>TETRA</u>				ATE: 09 / <u>30</u> / 1	
TEMPERATURE: (Criteria: 0.0°C – 6. Thermometer ID: SC2A (CF: 0.0°C); T Sample(s) outside temperature of Sample(s) outside temperature of Sample(s) received at ambient tem Ambient Temperature:	0°C, not frozen except sedin Femperature (w/o CF): <u>3</u> criteria (PM/APM contacted b criteria but received on ice/ch perature; placed on ice for tr	7°C (w/ CF): yy:) illed on same day o		E Blank □ Sampl Checked by: 6	
CUSTODY SEAL: Cooler	□ Present but Not Intact □ Present but Not Intact	Not Present	□ N/A □ N/A	Checked by:C Checked by:C	VP 269
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) COC document(s) received complete Sampling date Sampling tim No analysis requested Not r Sampler's name indicated on COC Sample container label(s) consistent v Sample container(s) intact and in goo Proper containers for analyses reques Sufficient volume/mass for analyses r Samples received within holding time Aqueous samples for certain analy	e	containers hed date □ No relir he holding time	nquished tim 104 9/3		
□ pH □ Residual Chlorine □ D Proper preservation chemical(s) note Unpreserved aqueous sample(s) r □ Volatile Organics □ Total Meta Container(s) for certain analysis free □ Volatile Organics □ Dissolved □ Carbon Dioxide (SM 4500) □ Tedlar™ bag(s) free of condensation	d on COC and/or sample cor eceived for certain analyses als	itainer Ived Oxygen (SM 45 Hydrogen Sulfide (H	500) ach)	ø ø	
CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAh □ 125PBznna □ 250AGB □ 250CG □ 500PB □ 1AGB □ 1AGBna₂ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16o Air: □ Tedlar™ □ Canister □ Sorbe Container: A = Amber, B = Bottle, C = Cl Preservative: b = buffered, f = filtered, h	na ₂ □ 100PJ □ 100PJna ₂ B □ 250CGBs □ 250PB I 1AGBs □ 1PB □ 1PBna □ zCGJ □ Sleeve () □ ent Tube □ PUF □ ear, E = Envelope, G = Glass, J	(Trip Blar □ 125AGB □ 125A □ 250PBn □ 500AC □ □ EnCores [®] () ↓ Other Matrix (= Jar, P = Plastic, and	nk Lot Num GBh □ 125 GB □ 500A(□ d TerraCores): d z = Ziploc/R	ber: <u>/60920</u> 5AGBp □ 125PB GJ □ 500AGJs □ s [®] (<u>3</u>) <u>Ø 202</u> □ □ Resealable Bag	<u>74</u>

Return to Contents

🔅 eurofins	WORK ORDER I	NUMBER:	Рас 16-0	ge 25 of 2 9- <u>入</u> る	7 276
Calscience SAMPLE RECEIPT	CHECKLIST	С	OOLEF	x_20	Fl
CLIENT: TETRA ECH		DA	te: 09	1 <u>30</u> 1	2016
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sedin Thermometer ID: SC2A (CF: 0.0°C); Temperature (w/o CF):3. □ Sample(s) outside temperature criteria (PM/APM contacted to Sample(s) outside temperature criteria but received on ice/ch □ Sample(s) outside temperature criteria but received on ice/ch □ Sample(s) received at ambient temperature; placed on ice for transition temperature: □ Air □ Filter	9°C (w/ CF): <u>3.9</u> by:) hilled on same day of			□ Samp ed by: _ Ç	
CUSTODY SEAL:Cooler□ Present and Intact□ Present but Not IntactSample(s)□ Present and Intact□ Present but Not Intact	Not Present	□ N/A □ N/A		ed by: <u>6</u> ed by: <u>10</u>	
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete □ Sampling date □ Sampling time	· ·			No □	N/A □ □
□ No analysis requested □ Not relinquished □ No relinquish Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested	ned date □ No relinq				
Samples received within holding time Aqueous samples for certain analyses received within 15-minut □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Proper preservation chemical(s) noted on COC and/or sample con Unpreserved aqueous sample(s) received for certain analyses	e holding time d Oxygen		₽ □		ם ער ם
 □ Volatile Organics □ Total Metals □ Dissolved Metals Container(s) for certain analysis free of headspace □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissol □ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Ferrous Iron (SM 3500) 	lved Oxygen (SM 450 lydrogen Sulfide (Hac	0) :h)			
Tedlar™ bag(s) free of condensation	(Trip Blank 125AGB □ 125AG 250PBn □ 500AGB	E Lot Numbe Bh □ 125A □ 500AG. □	er: GBp 🗆 J 🗆 500	125PB AGJ s]	-
Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ E Air: □ Tedlar [™] □ Canister □ Sorbent Tube □ PUF □ Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na s = H ₂ SO ₄ , u = ultra-pure, znna = Zn (CH ₃ CO ₂) ₂ + NaOH	_ Other Matrix (= Jar, P = Plastic, and Z): E : = Ziploc/Res] sealable E d/Check	□ Bag	069

Return to Contents

🔹 eurofins

Calscience

WORK ORDER NUMBER: 16-09-

SAMPLE ANOMALY REPORT

DATE: 09 / 30 / 2016

. N

. .

				٠.		Commen	te			
						Commen	113			
• •	s) NOT RECE								· · · · · · · · · · · · · · · · · · ·	
• •	s) received bu				h	1.000/000-000-00000000000000000000000000				
-	ime expired (I									
	nt sample am			alysis (list ana	alysis)					
• •	container(s)					·····				
	· preservative							<u></u>		
□ No prese	ervative noted	on COC o	r label (list	analysis and r	notify lab)					
Sample of	container(s) no	ot labeled				· ·				
□ Client sa	mple label(s)	illegible (li	st container	type and ana	lysis)	·····				
Ø Client sa	mple label(s)	do not ma	tch COC (c	omment)		 				<u>`to</u>]
🗆 Proje	ct information						Received	4 vials	W. TICI	instead
Client	t sample ID					of 2				
🗆 Samp	oling date and	/or time								
戶 Numb	per of containe	er(s)								
🗆 Requ	ested analysis	5								
Sample of	container(s) co	ompromise	ed (commer	nt)		: /				
🗆 Broke	en									
□ Wate	r present in sa	ample cont	tainer							
□ Air samp	le container(s) compron	nised (comr	nent)		:				
□ Flat										
□ Very	low in volume									
🗆 Leaki	ng (not transf	erred; dup	licate bag s	ubmitted)						
🗆 Leaki	ng (transferre	d into ECI	Tedlar™ b	ags*)						
🗆 Leaki	ing (transferre	d into clier	nt's Tedlar™	^м bags*)						
* Transfer	red at client's requ	uest.								
MISCELL	ANEOUS: ([Describe)				Commer	nts			
HEADSPA										
	th bubble > 6 mm	or 1/4 inch for	volatile organi	c or dissolved gas	s analysis)	(Containers wi	th bubble for othe	r analysis)		
ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested	Analysis
41	D	4								
	<u>y</u>	<u> </u>								
		<u> </u>								
		<u> </u>								
Comments	•									
Commonto								1	Reported by: _	869
** Record the i	total number of co	ntainers (i e	vials or hottle	s) for the affected	sample				Reviewed by: _	

Vikas Patel

From:	Acosta, Greg <gacosta@bas.com></gacosta@bas.com>
Sent:	Thursday, November 03, 2016 3:05 PM
То:	Vikas Patel
Subject:	RE: Additional Testing - Work Order 16-09-2276

I think the data will be useful regardless. It is just for planning purposes and not for submittal to an agency. When would the data be available?

Greg Acosta, P.E. | Vice President, Environmental Services Division Office: 909.860.7777 x258 | Fax: 909.396.1768 | Cell: 951.836.2709 greg.acosta@tetratech.com

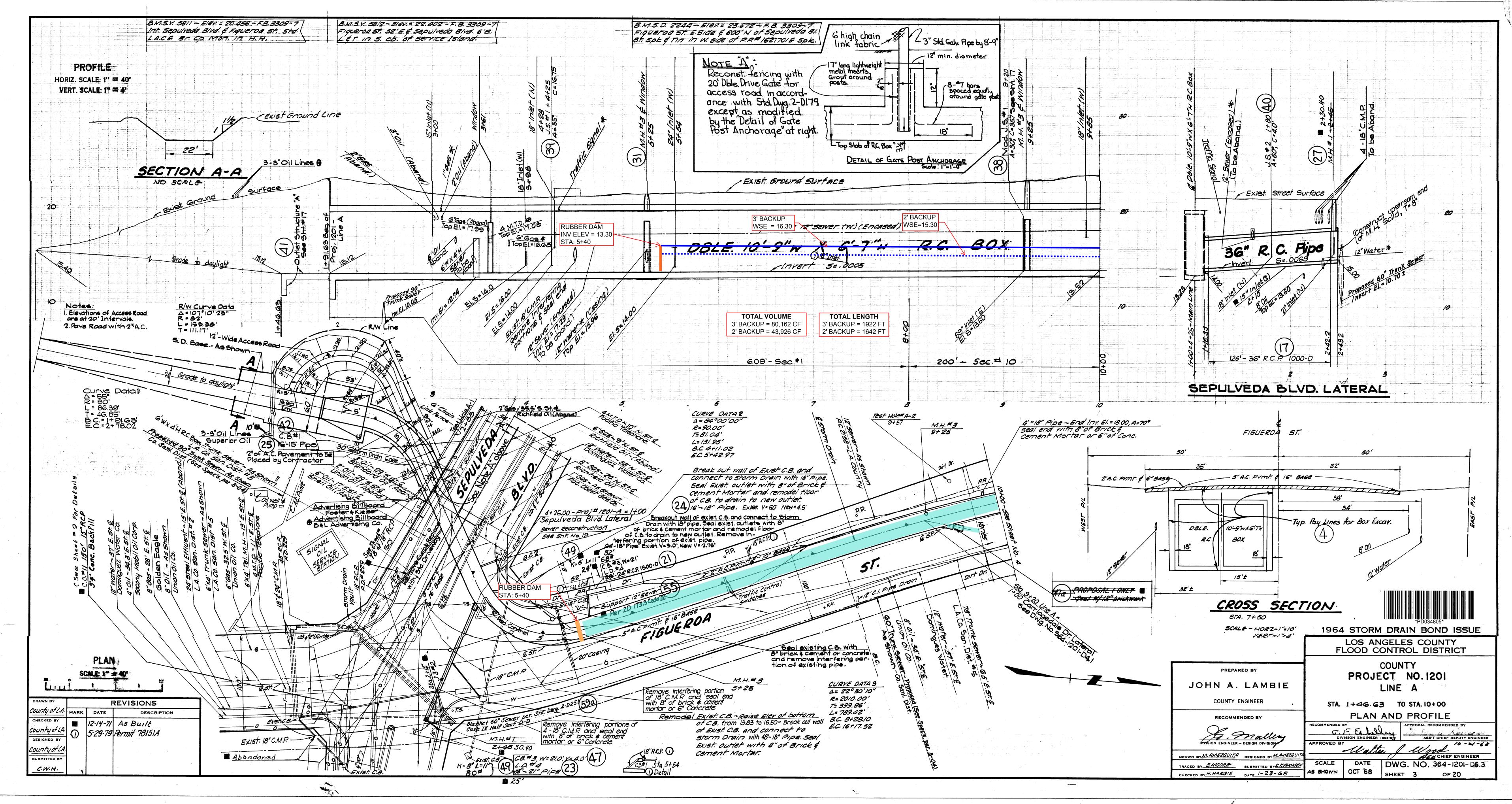
From: Vikas Patel [mailto:VikasPatel@eurofinsUS.com]
Sent: Thursday, November 03, 2016 3:02 PM
To: Acosta, Greg <gacosta@bas.com>
Cc: Erick Ovalle <ErickOvalle@eurofinsUS.com>; Vikas Patel <VikasPatel@eurofinsUS.com>
Subject: RE: Additional Testing - Work Order 16-09-2276

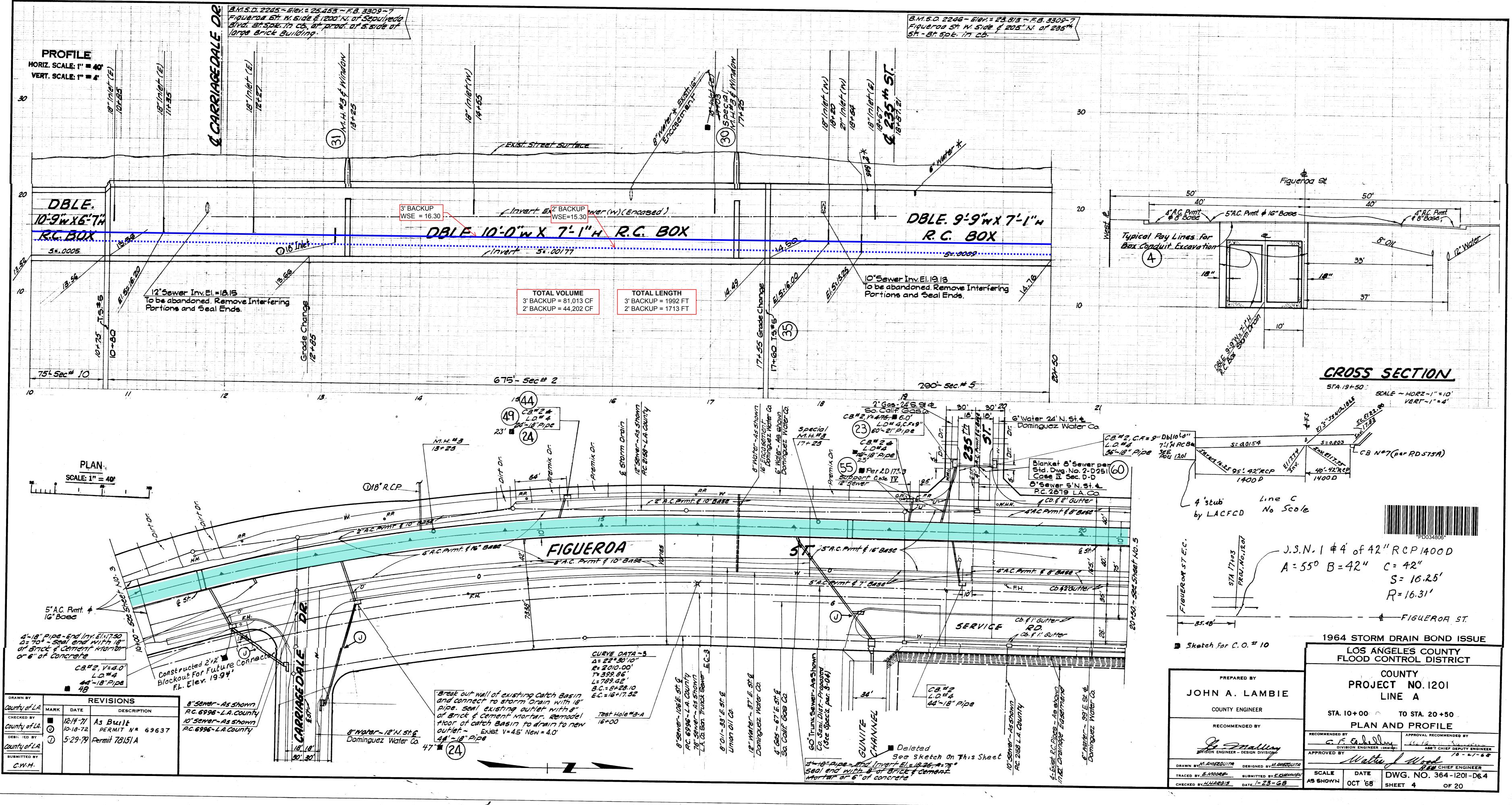
Hi Greg – Samples would be extracted and analyze past the recommended holding time (14 days). Please confirm this is acceptable.

Vik Patel Eurofins Calscience, Inc. Phone: +1 714 895 5494

From: Acosta, Greg [mailto:gacosta@bas.com]
Sent: Thursday, November 03, 2016 2:29 PM
To: Virendra Patel
Cc: 'Bob Stearns' (<u>BStearns@calscience.com</u>)
Subject: Additional Testing - Work Order 16-09-2276

Hi Vik,

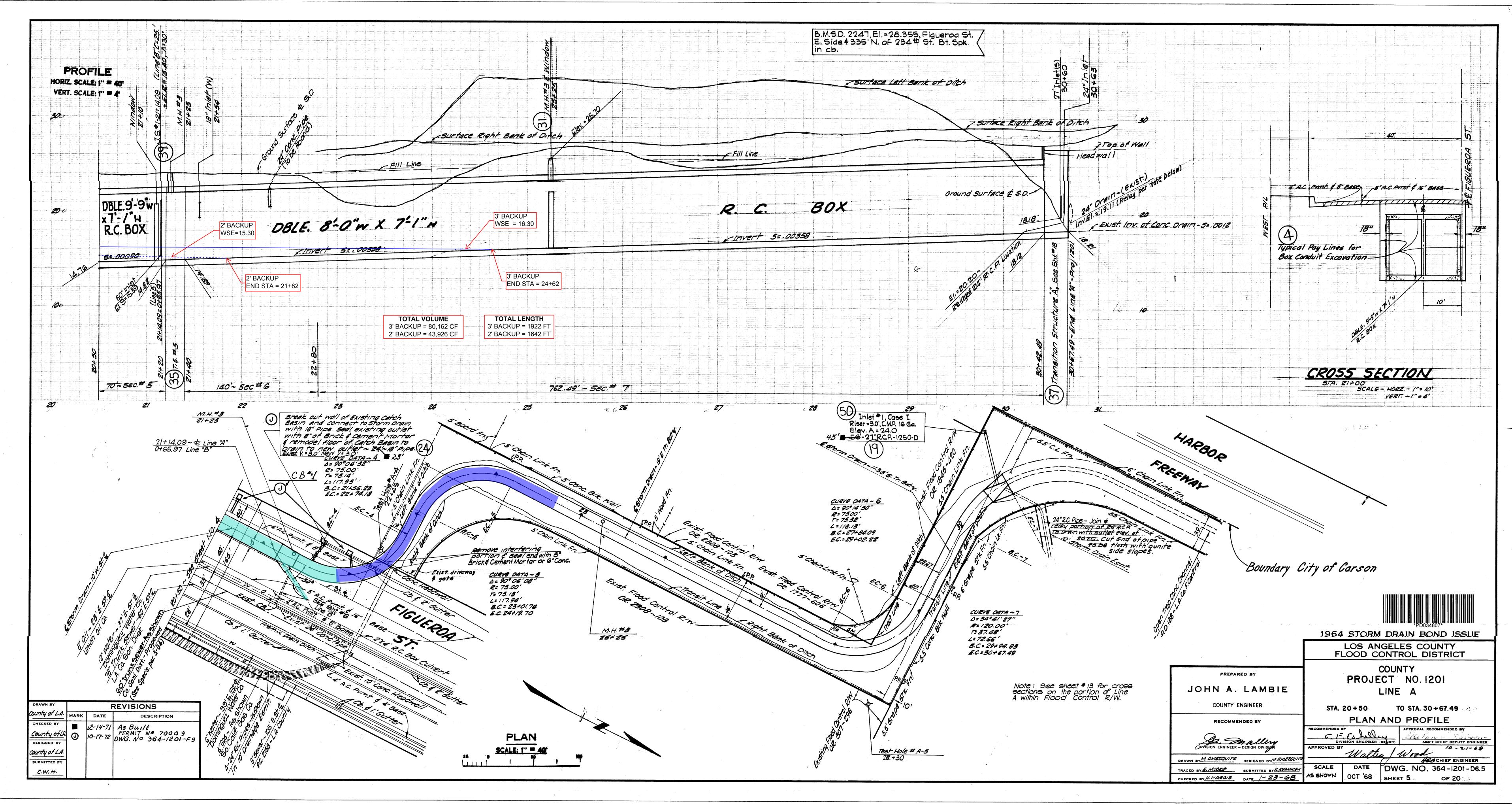

I need some additional testing run on some of the samples under Calscience Work Order 16-09-2276 as follows

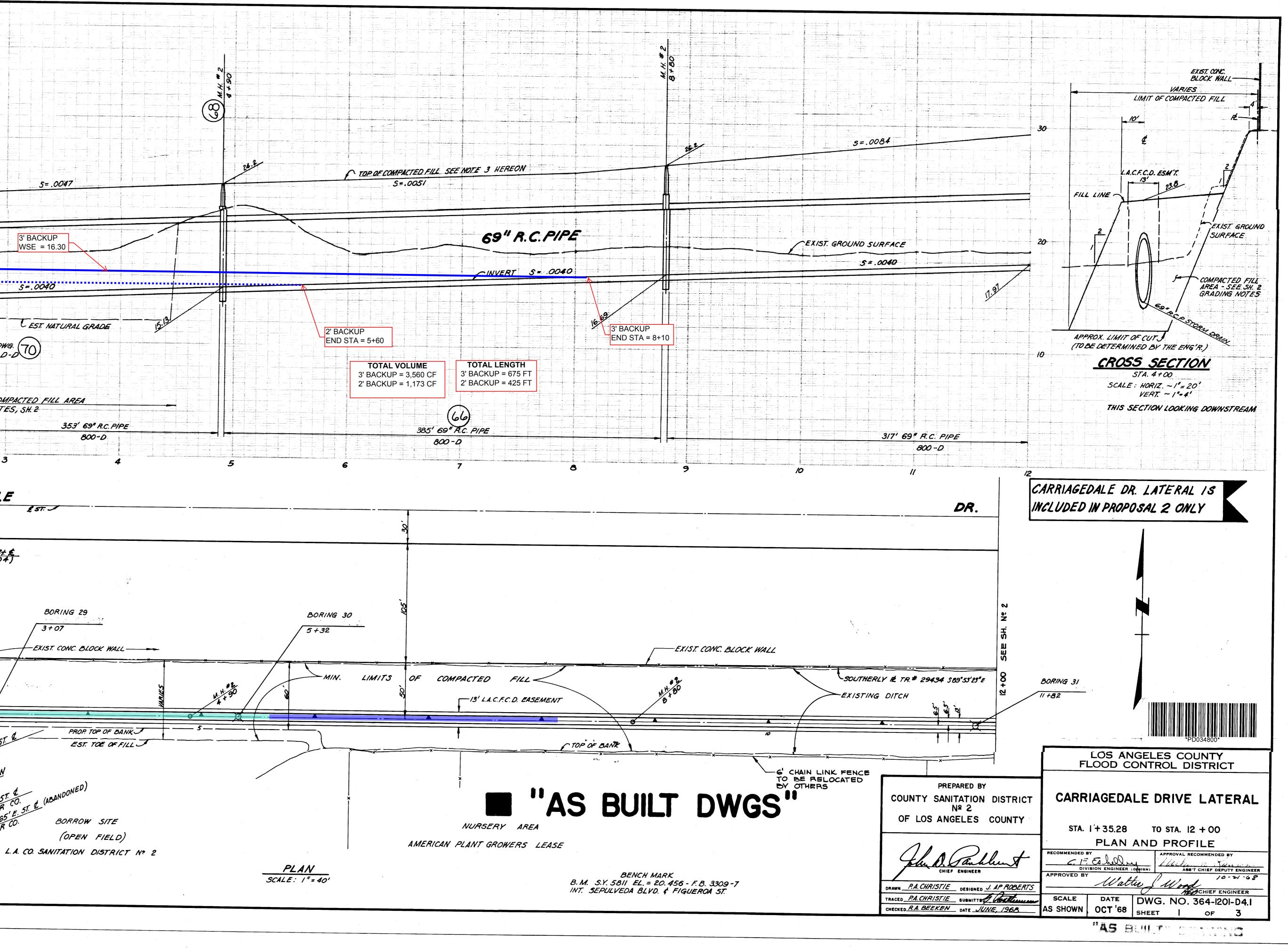

Sample ID	Lab Number	Analyses
B-1,P-3@10'	16-09-2276-3	
B-1,P-4@15'	16-09-2276-4	
B-2,P-3@10'	16-09-2276-19	
B-2,P-4@15'	16-09-2276-20	EDA 2021A (Destisidas)
B-3,P-3@10'	16-09-2276-27	EPA 8081A (Pesticides)
B-3,P-4@15'	16-09-2276-28	
B-4,P-3@10'	16-09-2276-35	
B-4,P-4@15'	16-09-2276-36	

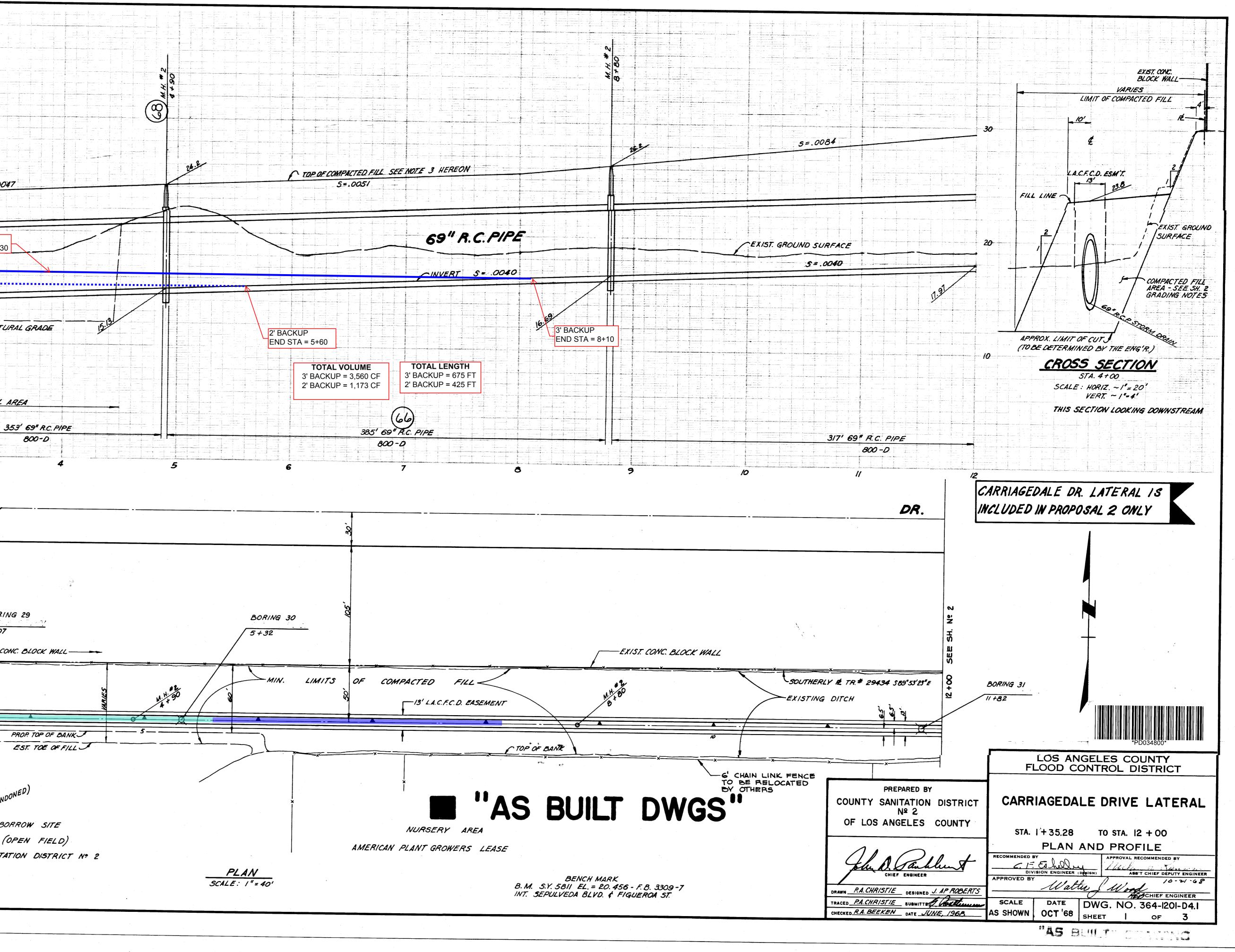
Please respond to this email confirming receipt and whether there are any issues with this request. Thanks.

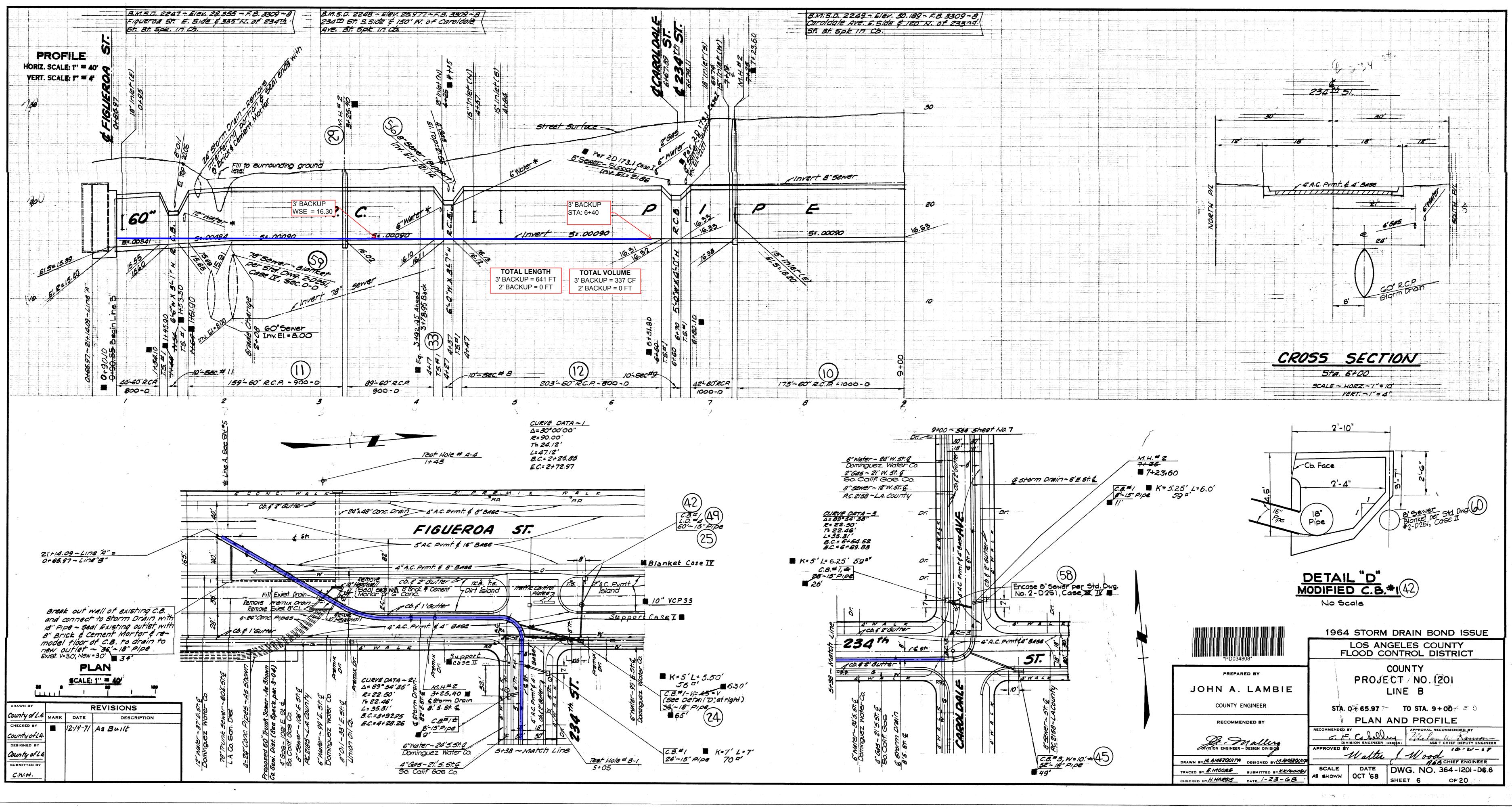
- Greg

APPENDIX C: RUBBER DAM IMPOUNDMENT DELINEATION

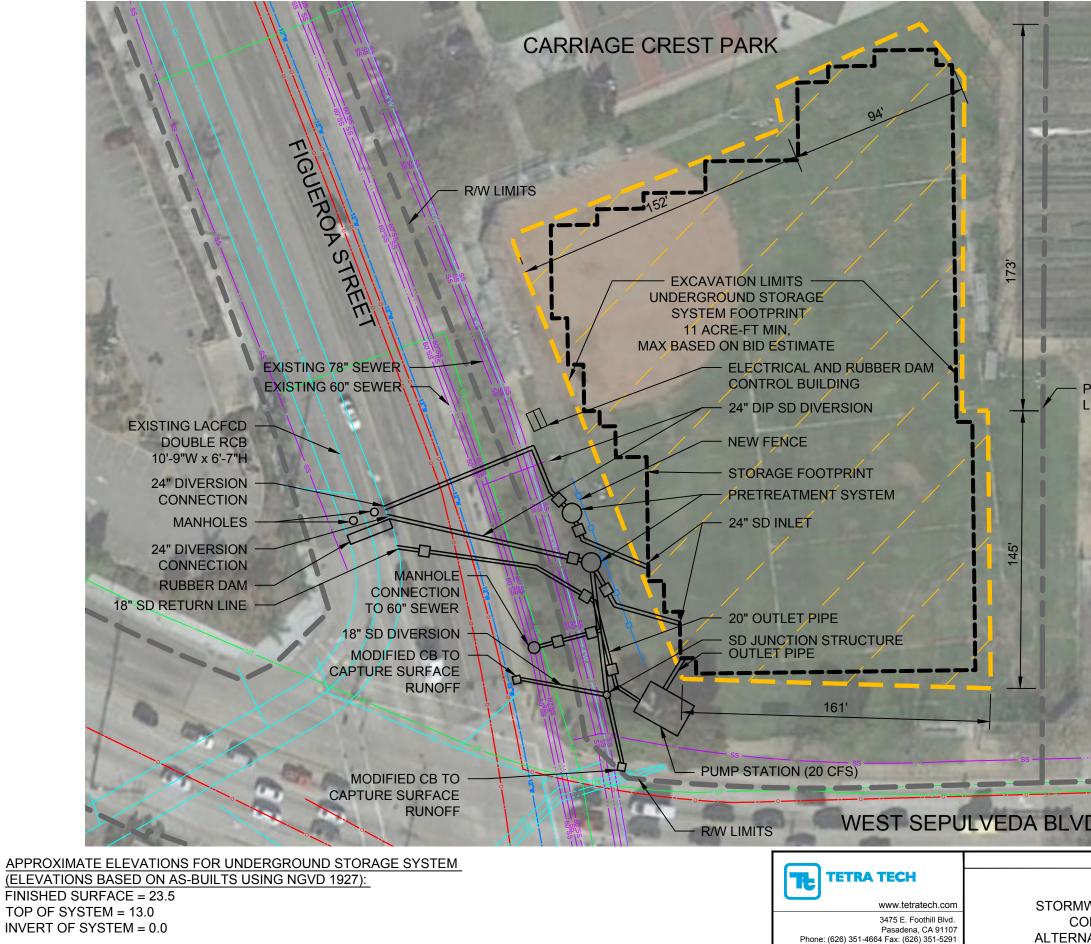


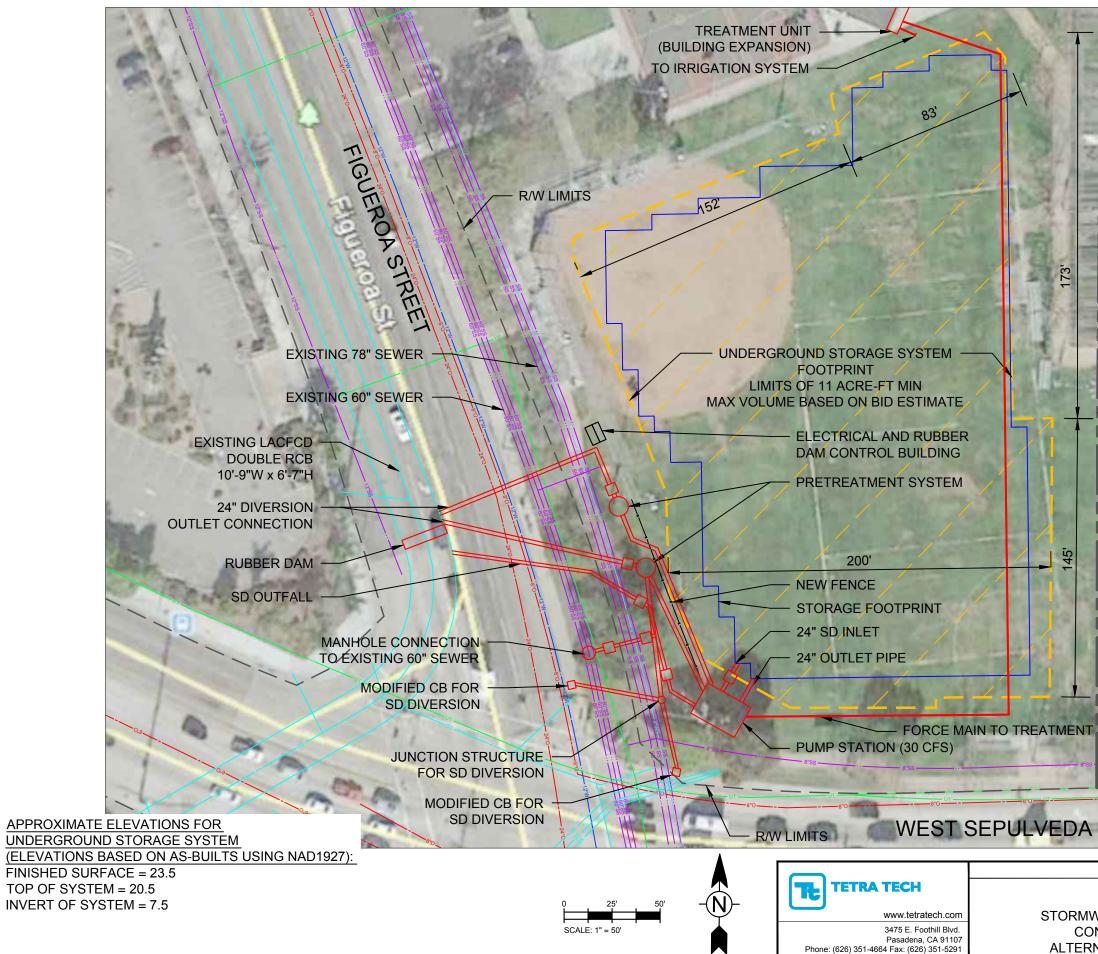

· · · · ·


· · · · ·

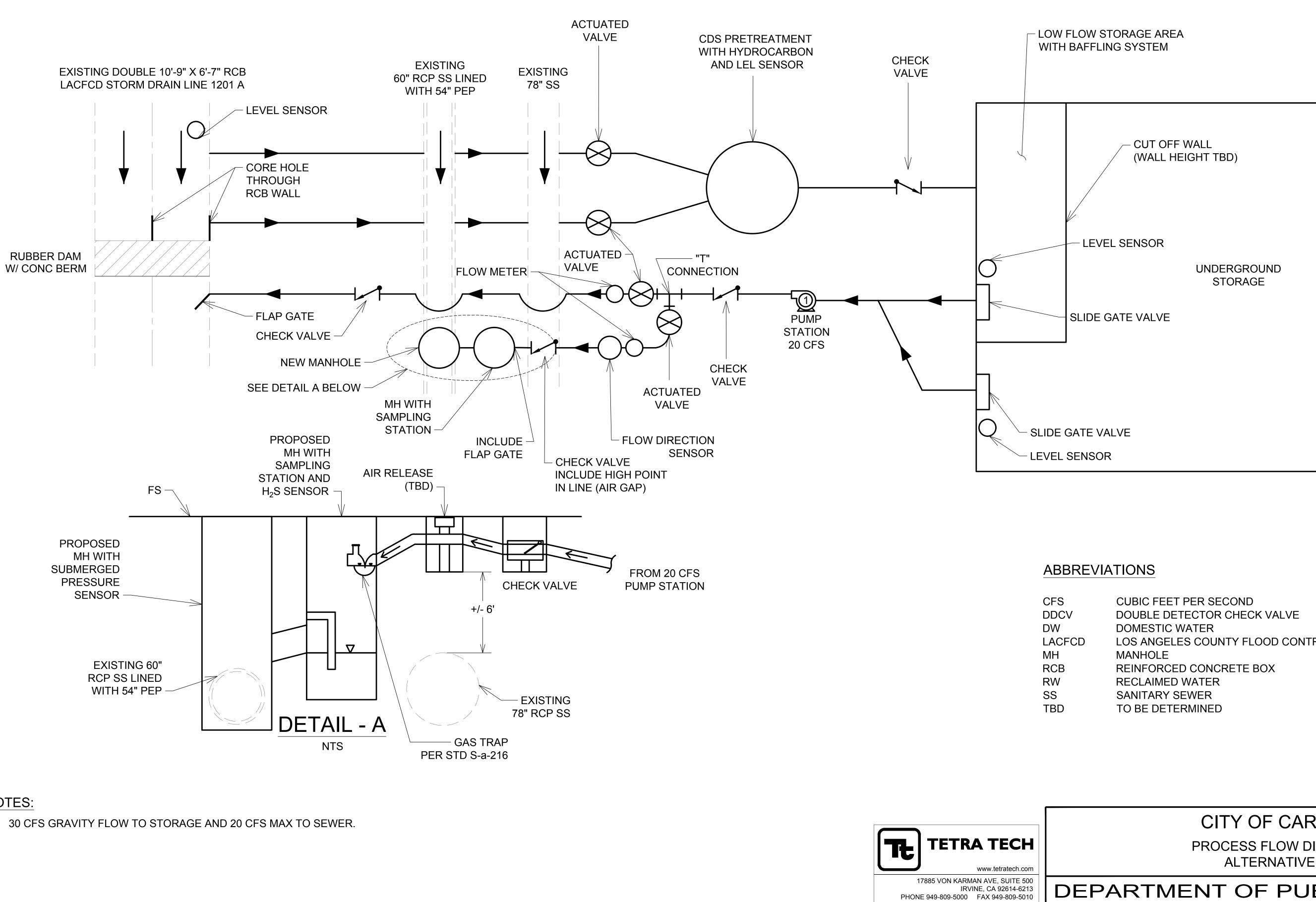

.

PROFILE HORIZ. SCALE: /"= 40' VERT. SCALE: I"=4" NOTES I. FOR LOCATION MAP SEE DWG. NO. 364-1201-DG. 2. FOR GENERAL NOTES & STANDARD PLANS SEE DWG. NO. 364-1201-06.2 3. COMPACTED FILL OVER PIPE MAY BE OBTAINED FROM BORROW SITE SHOWN ON GRADING PLAN, SH. 3 AND PLACED ACCORDING TO THE EXIST. STREET SURFACE 5= .0047 DRAWINGS AND SPECIFICATIONS. 5=.057 12" WATER # 2' BACKUP BANDONED) 3' BACKUP WSE = 16.30 TOPEL 50113 64 TOO FEEL THE FEEL 5=.0040 60"FUR SENCE M TOO FUNK SEWER BLANKET PER STD. DWG. 70 2-D 251 CASE IN SEC. D-D EST. LIMITS OF UNCOMPACTED FILL AREA SEE GRADING NOTES, SH. 2 CARRIAGEDALE £ ST. Proposed 60" Trunk Sewer 50' E. St. É. Co. Sani. Dist. (See Spec's. par. 3-04) a p OFERN CONSTRUCTION CURVE DATA Δ = 79° 33' // * R= 45.00' tra T= 37.46' FIGUEROA L= 62.48' 3+07 žQ 1βz; B.C. = /+32.97 E.C. = V+95.45 B 4' BARB WIRE FENCE E STORM DRAIN PROJECT # 1201 LINE A 12" SEWER AS SHO P.C. 2150 L.A. COUNT <u>M.H. #3</u> 9+25 9+20.00 PROJ. 1201-A = 1+00-CARRIAGEDALE DR. LATERAL 8" JET FUEL CO 12" WATER* 37' E. ST. CO. NOMINGUEZ WATER CO. A GALV. WATER 65'E. ST. E. RAWN BY REVISIONS LA.CO. SAN.DIST. MARK DATE DESCRIPTION PVMT. <u>L.A. CO. SAN. D/ST.</u> DESIGNED BY e" L.<u>A. CO. SAN. DIST</u>. (TEST HOLE) BORING # A-2 <u>PROJECT # 1201</u> 9.4.57 SUBMITTED B C.W.H.





APPENDIX D: DETAILED DRAWINGS AND SITE LAYOUTS


Note: The site configuration may be modified during final design.

and the second second second second	
PARTY AND A DESCRIPTION OF THE PARTY OF	
and the second s	
and the second	
And the second s	9
A REAL PROPERTY OF A REAL PROPER	
second statements and statements	-
and the second se	
and the state of the second	
THE REAL PROPERTY AND ADDRESS	
A PARTY AND A PART	9
PROPERTY	2
PROPERTY LINE	3
Tollar Commentation	
11182 通過時 法算	2
-(N)-	
, , , , , , , , , , , , , , , , , , ,	
	3
A second second	1
0 25 50 100	
A CONTRACTOR OF THE PARTY OF TH	
m i fort	
D. hard	
CITY OF CARSON CARRAIGE CREST PARK	Project No.: 135-01297-16021 Date: 2/16/17
	Designed By: JLF Supplemental
ONCEPTUAL SITE PLAN NATIVE 1 (GRAVITY SYSTEM)	EH-1
	Bar Measures 1 inch

the state	A CONTRACTOR
C S S S S S S S S S S S S S S S S S S S	and the second
	1、夏季
PROPERTY	No De
11. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TAN
Talline -	111111
T SYSTEM (OPTIONAL)	
BLVD.	
	ج ج
CITY OF CARSON	Project No.: 135-01297-16021
CARRAIGE CREST PARK	Designed By: JLF 날
WATER CAPTURE PROJECT DNCEPTUAL SITE PLAN RNATIVE 2 (PUMP SYSTEM)	Project No.: 135-01297-16021 Date: 12/9/16 Designed By: JLF Supplemental EH-2
· /	Bar Measures 1 inch

NOTES:

1. 30 CFS GRAVITY FLOW TO STORAGE AND 20 CFS MAX TO SEWER.

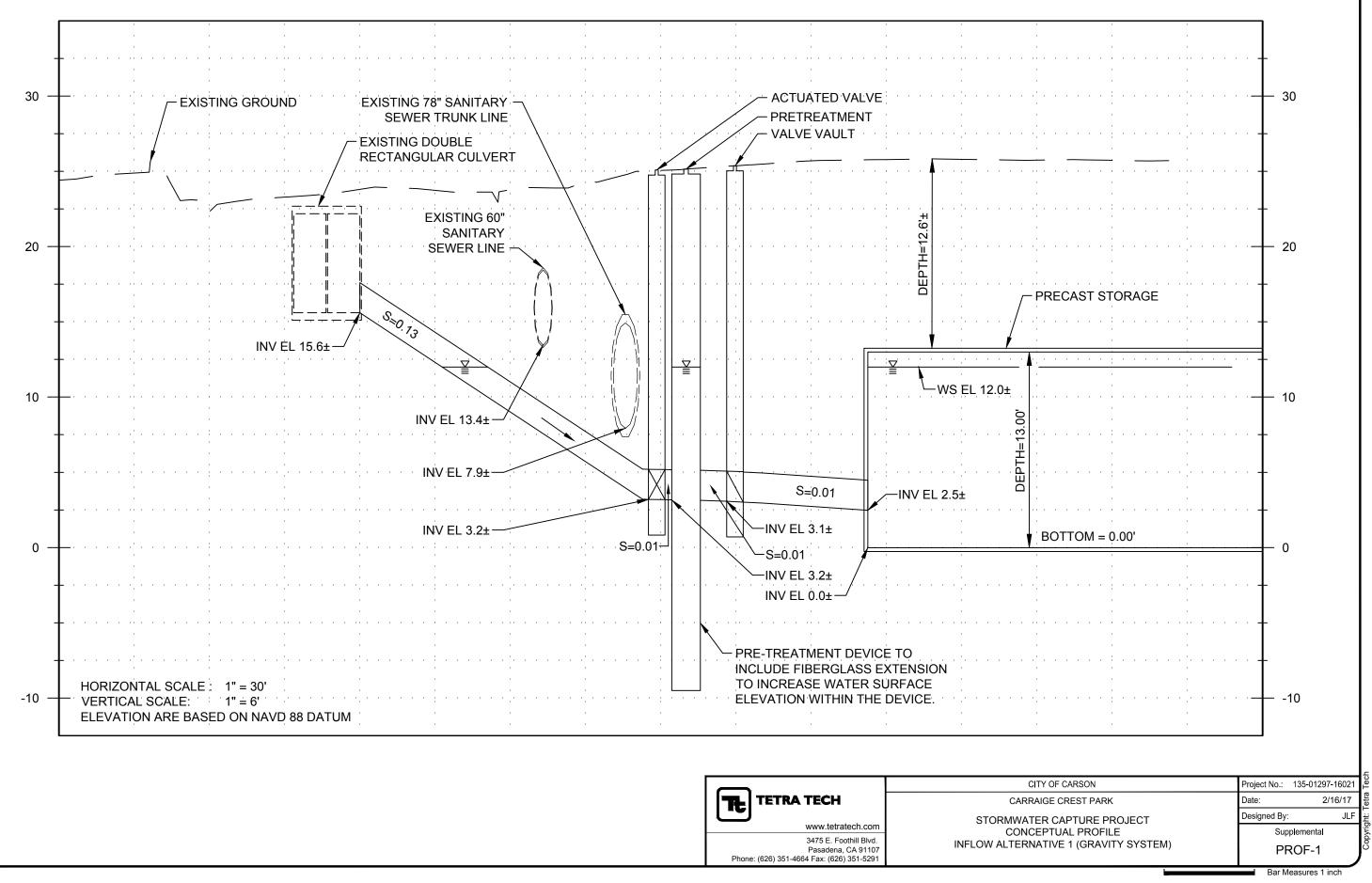
LOS ANGELES COUNTY FLOOD CONTROL DISTRICT

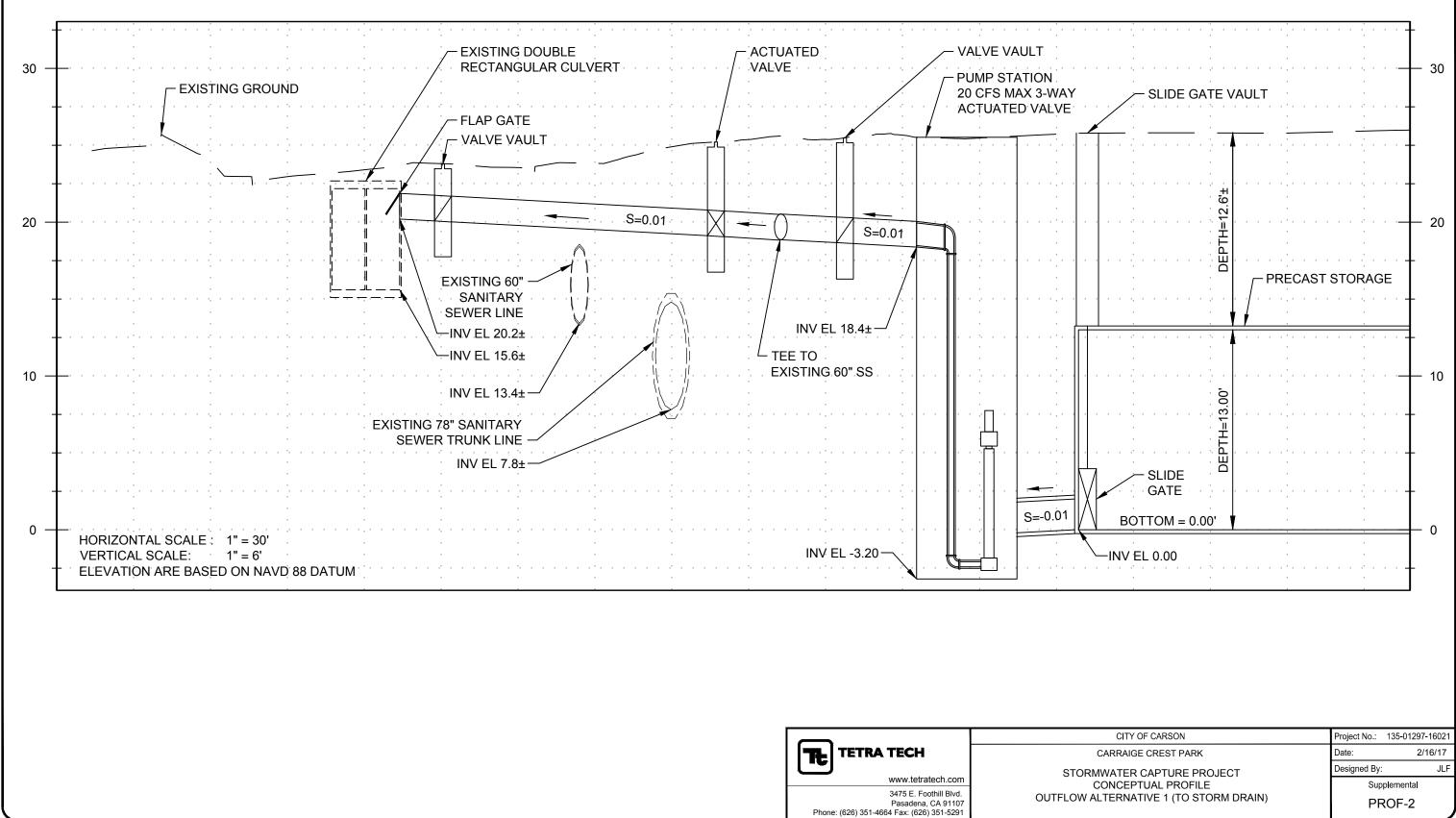
CITY OF CARSON PROCESS FLOW DIAGRAM ALTERNATIVE - 1

DRAWING	NO.
	REV.
PFD -1	
SHEET 1 C	DF 1

DEPARTMENT OF PUBLIC WORKS

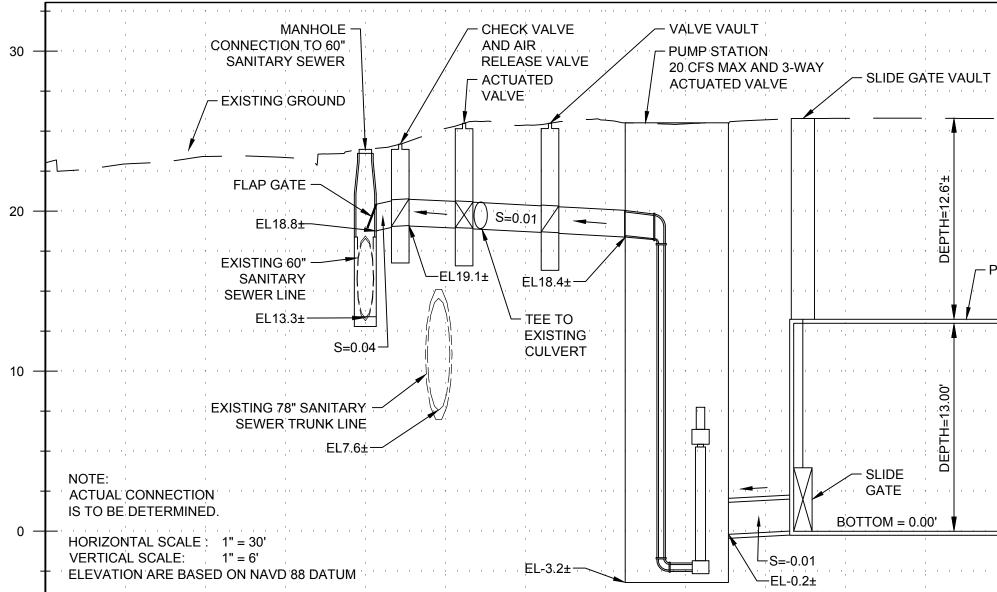
NOTES:


- 1. PUMP STATION 1 SHALL BE TIED TO TELEMETRY FOR LACSD MHD225.
- 2. IMPROVEMENTS SHOWN IN BLUE INDICATE AN OPTIONAL TREATMENT SYSTEM FOR ON-SITE IRRIGATION USE. IMPLEMENTATION OF THIS OPTIONAL SYSTEM WILL BE DETERMINED DURING FINAL DESIGN.
- 3. 20 CFS MAX PUMPED TO STORAGE OR 20 CFS MAX PUMPED TO SEWER.


	CUBIC FEET PER SECOND
	DOUBLE DETECTOR CHECK VALVE
	DOMESTIC WATER
D	LOS ANGELES COUNTY FLOOD CONTROL DISTRICT
	MANHOLE
	REINFORCED CONCRETE BOX
	RECLAIMED WATER
	SANITARY SEWER
	TO BE DETERMINED

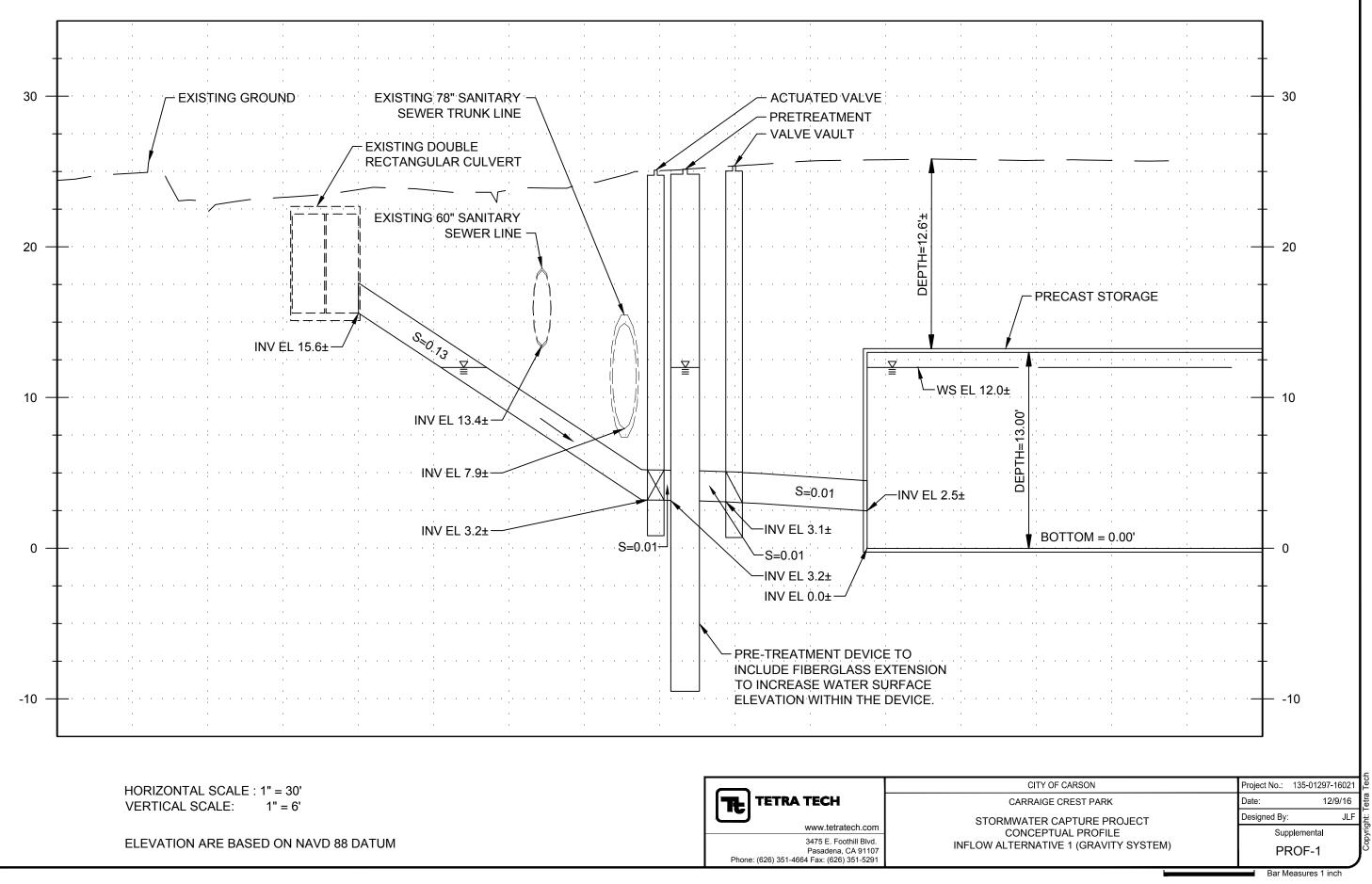
CITY OF CARSON PROCESS FLOW DIAGRAM ALTERNATIVE - 2

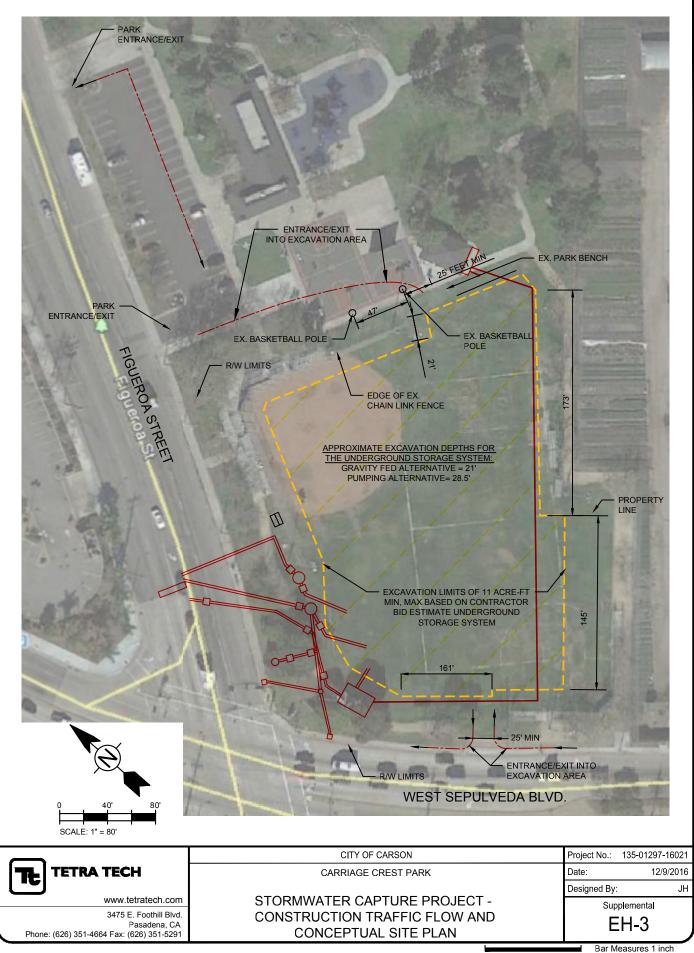
DRAWING	1	VO.
		REV.
PFD -2		
sheet 2	OF	- 2



- PANGIL	
6/2017 1:44:10 PM - P::01297135-01297-16021/CAD/CONCEPTUAL/EH-CONCEPTUALPROFILE_ALT1-FACTSHEET.DWG - PANGIL	
CONCEPTUAL PROFILE	
D\CONCEPTUAL\EH-C	
- P:\01297\135-01297-16021\CA	
7 1:44:10 PM - P:\01297	
6/2017	

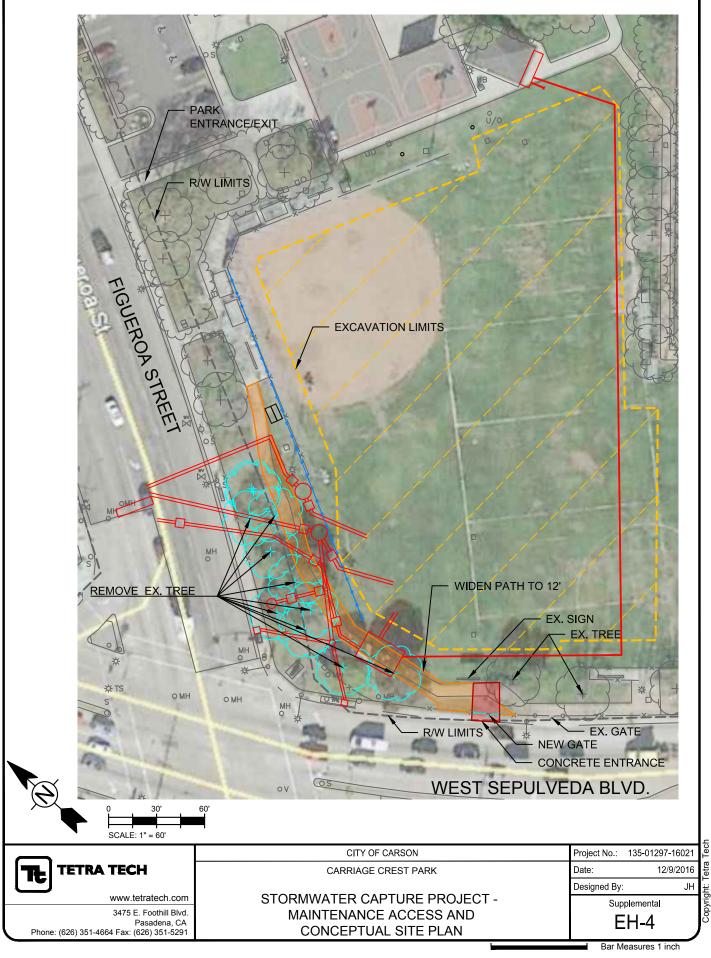
	STOR
www.tetratech.com	310K
3475 E. Foothill Blvd. Pasadena, CA 91107 Phone: (626) 351-4664 Fax: (626) 351-5291	OUTFLOW /

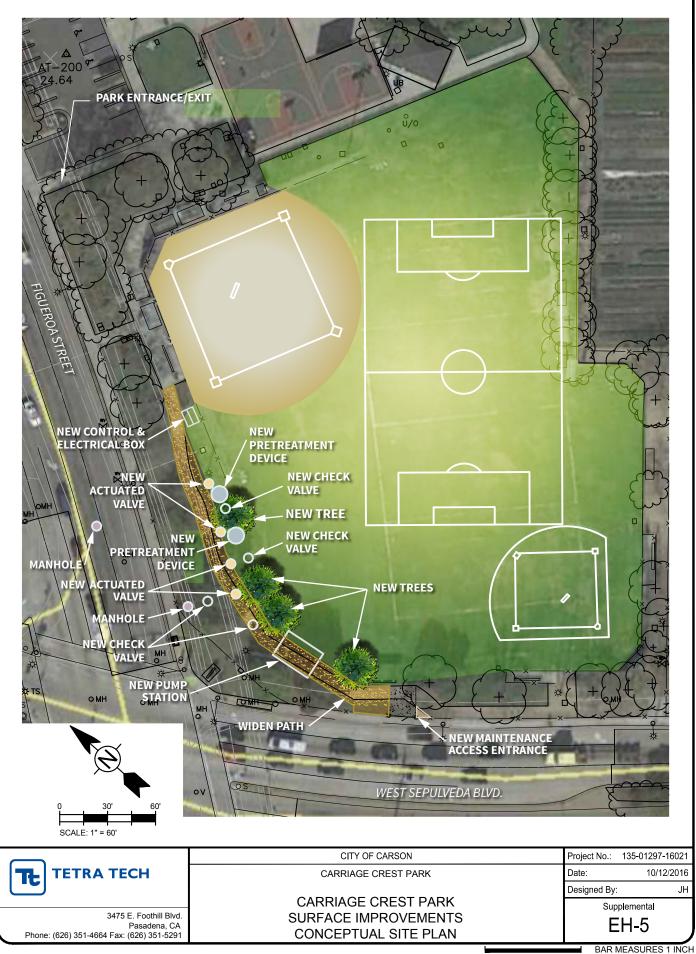

Bar Measures 1 inch


	CITY OF CARSON	Project No.:	135-01297-16021
TETRA TECH	CARRAIGE CREST PARK	Date:	2/16/17
	STORMWATER CAPTURE PROJECT	Designed By	r: JLF
www.tetratech.com	CONCEPTUAL PROFILE	Sur	pplementa
3475 E. Foothill Blvd. Pasadena, CA 91107 Phone: (626) 351-4664 Fax: (626) 351-5291	OUTFLOW ALTERNATIVE 1 (TO SANITARY SEWER)	I .	ROF-3
		Bork	Acaduras 1 inch

																_			
																-	-		
•						•							•						
																		~~	
															·		_	30	
•													•						
													·						
																	L		
													•						
							_					-				_			
•							_						•						
																-	L		
													•						
													•						
•									•			•	•		•	-	-		
													•						
•																		20	
• *						÷.							÷.,		. –			20	
•													•						
																_	L		
	\sim	۸C	٢	C	тι	٦E	<u>م ح</u>	C					•						
	\cup	10	21	3	10	Л	ΎР	G											
		÷										•							
		·	•		•	•.		•	•	•	•	•		•	•				
						· ·	•	•	•	•		•							
			·	·	·	· .	•	•	•		·					-			
					· ·	· · · · · · · · · · · · · · · · · · ·		·	· ·	·	· ·	· ·		·	·	-	_		
			·	·	·	· .	•	•	·	•	·	· ·		· ·	· ·	-	_		
				·	·	· .	·	•	·	·	·	•		· ·	· ·	-	-		
. [.]		· ·	·	·	· ·	· · · · · · · · · · · · · · · · · · ·	·	•	•	·	· ·	•	· ·		· ·	-	-		
. [.]	•	· ·	·	·	·	· · · · · · · · · · · · · · · · · · ·	·	•	•	·	·		· · ·	•	•		_	10	
	•	•	· ·		•	· · · · · · · · · · · · · · · · · · ·	·	•	•	·	•	•	· · ·		· ·		_	10	
	•	•	·	·	•	· · · · ·	·	•	•	·	•	•	· · ·		· ·		_	10	
		· ·	·	•	•	· · · · · · · · · · · · · · · · · · ·	•	•	•	•	•	•	· ·	•			-	10	
	•	•	·	•	•	· · · · · · · · · · · · · · · · · · ·	•	•	•	•	•	•	· ·	•			-	10	
• • • • •	•	· ·	· ·	•	· ·	· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•	· ·	•	· · ·	•	· ·		_	10	
· · · · · · · · · · · · · · · · · · ·	•	· ·	· ·	•	•	· · · · · · · · · · · · · · · · · · ·	•	• • •	· ·	•	•		· · · · · · · · · · · · · · · · · · ·	· ·	· · ·		-	10	
· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•	•	· · · · · · · · · · · · · · · · · · ·	•	•			•	•	· · · · · · · · · · · · · · · · · · ·	•	· ·			10	
· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•	•		•	•	•	•	•	•	· · · · · · · · · · · · · · · · · · ·	•	· ·		-	10	
· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•		· · · · · · · · · · · · · · · · · · ·	•	•	•	•		•	· · · · · · · · · · · · · · · ·	•	· · _		-	10	
· · · · · · · · · · · · · · · · · · ·	•	· ·	· ·	•	· ·	· · · · · · · · · · · · · · · · · · ·	•	· ·	· ·	•	· ·		· · · · · · · · · · · · · · · · · · ·	· ·				10	
· · · · · · · · · · · · · · · · · · ·	•	· ·	· ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	•	· ·	•	· ·		· · · · · · · · · · · · · · · · · · ·	• • •				10	
· · · · · · · · · · · · · · · · · · ·	•	· ·	· ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	· ·	•			10	
· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•	•	· · · · · · · · · · · · · · · · · · ·	•	•	· ·	· ·	•	•	· · · · · · · · · · · · · · · · · · ·	•	· · _		-	10	
· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•	•	· · · · · · · · · · · · · · · · · · ·	•	•	· ·	· ·	•	•	· · · · · · · · · · · · · · · · · · ·	•	• • •		-	10	
· · · · · · · · · · · · · · · · · · ·	· · ·	· · · ·	· ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·	· · ·	· ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·			10	
· · · · · · · · · · · · · · · · · · ·	•	· · · ·	· ·	•	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·	· · ·	· · · · · ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·		_	10	
· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•	· ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· ·	· · ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · -			10	
· · · · · · · · · · · · · · · · · · ·	•	•	· ·	· ·	· · ·	· · · · · · · · · · · · · · · · · · ·	•	•	· ·	•	· · ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · -			10	
· · · · · · · · · · · · · · · · · · ·	•	· ·	· ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	•	•	· · · · · ·	· ·	· ·	•	· · · · · · · · · · · · · · · · · · ·	· ·	· ·				
· · · · · · · · · · · · · · · · · · ·	· ·	· · ·	· · ·	· · ·	- - -	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · ·	· · ·	- - -	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·			10	
· · · · · · · · · · · · · · · · · · ·	· ·	· ·	· · ·	· · ·	· ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · ·	· · ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·				
· · · · · · · · · · · · · · · · · · ·	•	· ·	· · ·	· · ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·	· · ·	· · ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·				
	· · · ·	· ·	· · ·	· · ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·	· · ·	· ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·	- -	· · -				
	· · ·	· · ·	· · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·				
	· ·	· · ·	· · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·		· ·	· · ·				
	· · · · · · · · · · · · · · · · · · · ·			RECAST	RECAST S	ECAST STO	ECAST STOP	ECAST STORA	ECAST STORAG	ECAST STORAGE	ECAST STORAGE	ECAST STORAGE	ECAST STORAGE	ECAST STORAGE	ECAST STORAGE	ECAST STORAGE	ECAST STORAGE	ECAST STORAGE	30 30 20 RECAST STORAGE

Bar Measures 1 inch

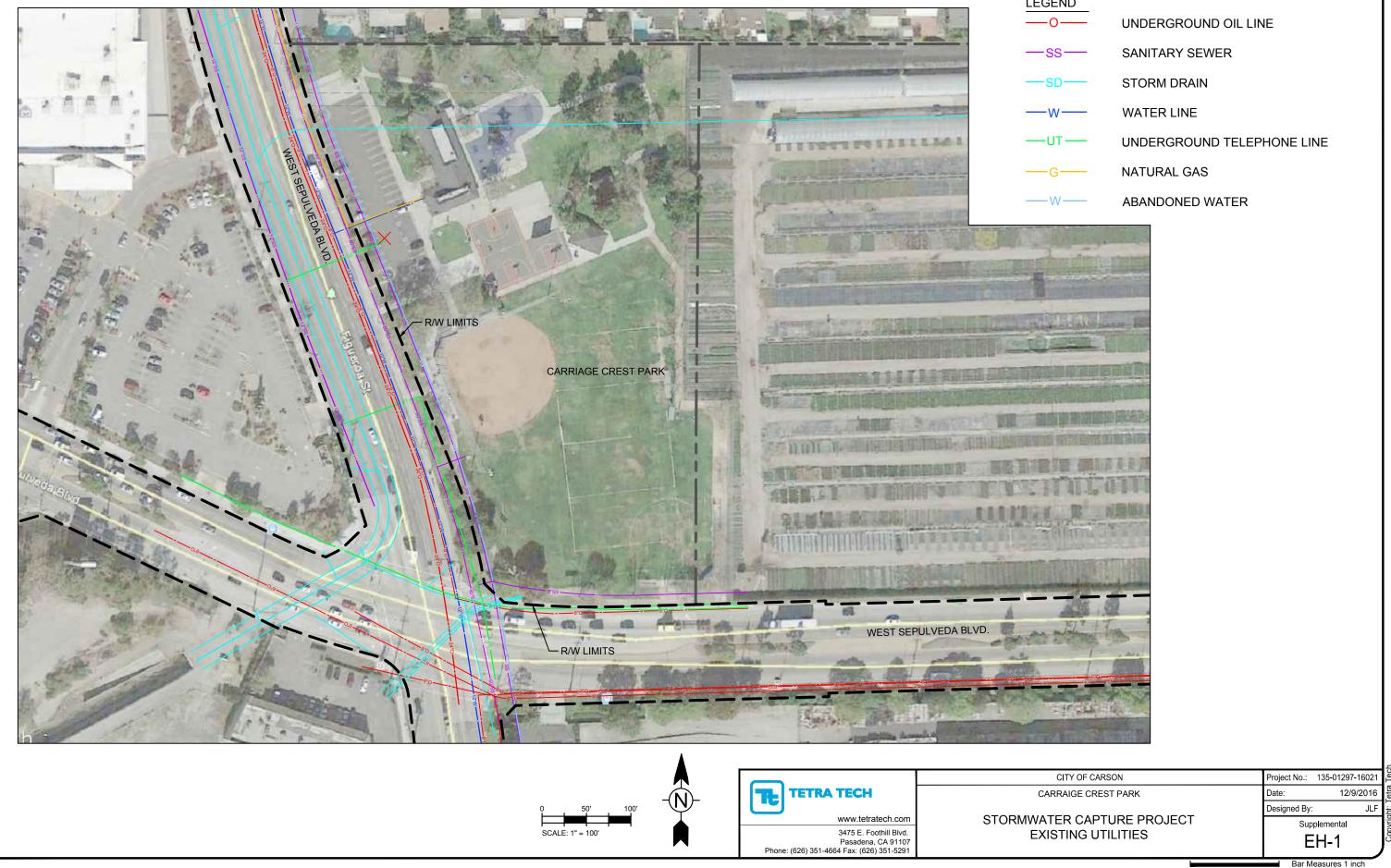

TETRA TECH	STOR
3475 E. Foothill Blvd. Pasadena, CA 91107 Phone: (626) 351-4664 Fax: (626) 351-5291	INFLOW AL



ech

letra

Copyright:



Ц Ц

ETRA

RIGH

C C C C

LEGEND	UNDERGROUND OIL LINE
—ss—	SANITARY SEWER
—sd—	STORM DRAIN
—w—	WATER LINE
—-UT—-	UNDERGROUND TELEPHONE LINE
—_G—	NATURAL GAS
—-W—	ABANDONED WATER
when the loss of the loss	

APPENDIX E: DETAILED PRELIMINARY COST ESTIMATES

Client: County of Los Angeles Sanitation District

Project: Carson Stormwater and Runoff Capture Project - Carriage Crest Park

Status: Preliminary Engineering Design - Alternative 1

Prepared by: JH Checked by: JLF Date: Dec. 8, 2016

Description	Qty	Unit	Unit Price	Total
Miscellaneous			-	\$369,293
Mobilization / Demobilization (3% of Costs)	1	LS	\$229,293.00	\$229,293
Traffic Control	1	LS	\$40,000.00	\$40,000
SCADA and Telemetry Upgrades	1	LS	\$50,000.00	\$50,000
Active Controls	1	LS	\$50,000.00	\$50,000
Channel Diversion and Pretreatment				\$641,139
Pneumatic Gate (Rubber Dam) System	1	LS	\$100,000.00	\$100,000
Concrete Pad (Rubber Dam Controls)	200	SF	\$10.00	\$2,000
Fiberglass Shelter (Rubber Dam Controls)	1	LS	\$100,000.00	\$100,000
Actuated Valves and Vault	2	EA	\$25,000.00	\$50,000
Check Valves and Vault	2	EA	\$10,000.00	\$20,000
Pretreatment Device (15 cfs)	2	EA	\$100,000.00	\$200,000
60" Junction Structure	1	LS	\$45,000.00	\$45,000
CB Junction Structures (with Pretreatment)	2	LS	\$9,000.00	\$18,000
Piping to Pretreatment (24" DIP)	220	LF	\$175.00	\$38,500
Piping to Pretreatment (18" DIP)	150	LF	\$150.00	\$22,500
Piping to Storage (24" DIP)	110	LF	\$175.00	\$19,250
Excavation for Piping	1,294	CY	\$20.00	\$25,889
Site Preparation and Demolition - Existing Park Area				\$16,085
Concrete Walkway and Sidewalk Removal	250	SF	\$3.50	\$875
Concrete Curb and Gutter Removal	50	LF	\$5.00	\$250
AC Pavement Removal	560	SF	\$3.50	\$1,960
Tree Removal	8	EA	\$1,000.00	\$8,000
Irrigation Removal	1	LS	\$3,000.00	\$3,000
Water Line Relocation	1	LS	\$2,000.00	\$2,000
Storage				\$5,300,799
Excavation	39,438	CY	\$9.00	\$354,942
Shoring	25,000	SF	\$20.00	\$500,000
Backfill of Sides (Aggregate)	900	CY	\$30.00	\$27,000
Backfill and Compaction (On-site Materials)	13,890	CY	\$9.00	\$125,008
Hauling - Non-hazardous Material	12,928	CY	\$30.00	\$387,847
Hauling - Hazardous Material	12,620	CY	\$79.00	\$996,980
Underground Storage (11 Acre-Ft)	479,160	CF	\$6.00	\$2,874,960
Subgrade (6" Stone Base)	789	CY	\$30.00	\$23,662
Maintenance Hole	2	EA	\$5,000.00	\$10,000
Flap Gate Valve	2	EA	\$200.00	\$400
Pump Station and Conveyance				\$1,041,062
Excavation	220	CY	\$9.00	\$1,980
Shoring	1,800	SF	\$15.00	\$27,000
Pump Station (3-pump, 20 CFS)	1	LS	\$508,500.00	\$508,500
Pump Station Structure	1	LS	\$380,360.00	\$380,360
20" DIP Force Main	225	LF	\$140.00	\$31,500
24" DIP to Pump Station	20	LF	\$175.00	\$3,500
Maintenance Hole	1	EA	\$5,000.00	\$5,000
Excavation for Piping	61	CY	\$20.00	\$1,222
Actuated Valves and Vault	2	EA	\$25,000.00	\$50,000
Check Valves and Vault	3	EA	\$10,000.00	\$30,000
Chain Link Fence	100	LF	\$20.00	\$2,000

Client: County of Los Angeles Sanitation District

Project: Carson Stormwater and Runoff Capture Project - Carriage Crest Park

Status: Preliminary Engineering Design - Alternative 1

Prepared by: JH Checked by: JLF Date: Dec. 8, 2016

Description	Qty	Unit	Unit Price	Total
Electrical Service, Controls, Instrumentation				\$274,200
Electrical Service	1	LS	\$110,000.00	\$110,000
Control Panel and PLC Programming	1	LS	\$70,000.00	\$70,000
Conduit & Wiring	1	LS	\$25,000.00	\$25,000
NEMA 4 Junction Box, 6"x6" x6" (3 each for 480V and 120V conduits)	6	EA	\$200.00	\$1,200
Misc. Conduit Fittings, Elbows, Core Drilling and Sealing, etc.	1	LS	\$8,000.00	\$8,000
Instrumentation	1	LS	\$60,000.00	\$60,000
Landscape and Irrigation Modifications				\$228,250
Re-Planting/Seeding Excavation Areas	75,000	SF	\$0.50	\$37,500
Irrigation System (including all components and mainline)	75,000	SF	\$2.15	\$161,250
90-Day Plant Establishment Period	1	LS	\$20,000.00	\$20,000
Tree Planting	19	EA	\$500.00	\$9,500
Site Amenities and Improvements				\$66,550
Baseball Infield	13,000	SF	\$3.00	\$39,000
Concrete Paving	400	SF	\$10.00	\$4,000
Concrete Walkway and Sidewalk	250	SF	\$10.00	\$2,500
Concrete Curb and Gutter	50	LF	\$26.00	\$1,300
AC Paving (Figueroa Street)	600	SF	\$7.00	\$4,200
AC Overlay (Laydown Area)	15,550	SF	\$1.00	\$15,550
Start-up, Testing, Prepare Operations & Maintenance Manuals, and Pre	epare Recor	d Drawi	ngs	\$75,000
SWPPP Implementation	1	LS	\$15,000.00	\$15,000
Start-up and Testing	1	LS	\$50,000.00	\$50,000
O&M Manuals	1	LS	\$5,000.00	\$5,000
Record Drawings	1	LS	\$5,000.00	\$5,000
SUBTOTAL				\$8,012,378
	20%	0	Contingency =	\$1,602,475.68

TOTAL \$9,614,854

Notes:

Cost for optional water treatment and re-use has not been included.

A 13' depth was chosed based on an average height from multiple precast concrete vendors. Extending the height will decrease the required footprint and lower hazardous export quantities.

Client: County of Los Angeles Sanitation District

Project: Carson Stormwater and Runoff Capture Project - Carriage Crest Park

Status: Preliminary Engineering Design - Alternative 2

Prepared by: JH Checked by: JLF Date: Dec. 8, 2016

Description	Qty	Unit	Unit Price	Total
Miscellaneous				\$381,601
Mobilization / Demobilization (3% of Costs)	1	LS	\$241,601.00	\$241,601
Traffic Control	1	LS	\$40,000.00	\$40,000
SCADA and Telemetry Upgrades	1	LS	\$50,000.00	\$50,000
Active Controls	1	LS	\$50,000.00	\$50,000
Channel Diversion and Pretreatment				\$590,380
Pneumatic Gate (Rubber Dam) System	1	LS	\$100,000.00	\$100,000
Concrete Pad (Rubber Dam Controls)	200	SF	\$10.00	\$2,000
Fiberglass Shelter (Rubber Dam Controls)	1	LS	\$100,000.00	\$100,000
Actuated Valves and Vault	2	EA	\$25,000.00	\$50,000
Pretreatment Device (15 cfs)	2	EA	\$100,000.00	\$200,000
60" Junction Structure	1	LS	\$45,000.00	\$45,000
CB Junction Structures (with Pretreatment)	2	LS	\$9,000.00	\$18,000
Piping to Pretreatment (24" DIP)	210	LF	\$175.00	\$36,750
Piping to Pretreatment (18" DIP)	140	LF	\$150.00	\$21,000
Excavation for Piping	881	CY	\$20.00	\$17,630
Pump Station and Conveyance				\$1,502,276
Excavation	163	CY	\$9.00	\$1,467
Shoring	1,260	SF	\$15.00	\$18,900
Pump Station (4-pump, 30 CFS)	1	LS	\$762,750.00	\$762,750
Pump Station Structure	1	LS	\$570,540.00	\$570,540
Piping from Pretreatment to Pump Station (24" DIP)	175	LF	\$175.00	\$30,625
Piping from Pump Station to Storage (24" DIP)	15	LF	\$175.00	\$2,625
Piping from Storage to Pump Station (24" DIP)	15	LF	\$175.00	\$2,625
20" DIP Force Main	225	LF	\$140.00	\$31,500
Maintenance Hole	1	EA	\$5,000.00	\$5,000
Excavation for Piping	212	CY	\$20.00	\$4,244
Actuated Valves and Vault	2	EA	\$25,000.00	\$50,000
Check Valves and Vault	2	EA	\$10,000.00	\$20,000
Chain Link Fence	100	LF	\$20.00	\$2,000
Site Preparation and Demolition - Existing Park Area				\$16,085
Concrete Walkway and Sidewalk Removal	250	SF	\$3.50	\$875
Concrete Curb and Gutter Removal	50	LF	\$5.00	\$250
AC Pavement Removal	560	SF	\$3.50	\$1,960
Tree Removal	8	EA	\$1,000.00	\$8,000
Irrigation Removal	1	LS	\$3,000.00	\$3,000
Water Line Relocation	1	LS	\$2,000.00	\$2,000
Storage				\$5,300,599
Excavation	39,438	CY	\$9.00	\$354,942
Shoring	25,000	SF	\$20.00	\$500,000
Backfill of Sides (Aggregate)	900	CY	\$30.00	\$27,000
Backfill and Compaction (On-site Materials)	13,890	CY	\$9.00	\$125,008
Hauling - Non-hazardous Material	12,928	CY	\$30.00	\$387,847
Hauling - Hazardous Material	12,620	CY	\$79.00	\$996,980
Underground Storage (11 Acre-Ft)	479,160	CF	\$6.00	\$2,874,960
Subgrade (6" Stone Base)	789	CY	\$30.00	\$23,662
Maintenance Hole	2	EA	\$5,000.00	\$10,000
Flap Gate Valve	1	EA	\$200.00	\$200

Client: County of Los Angeles Sanitation District

Project: Carson Stormwater and Runoff Capture Project - Carriage Crest Park

Status: Preliminary Engineering Design - Alternative 2

Prepared by: JH Checked by: JLF Date: Dec. 8, 2016

Description	Qty	Unit	Unit Price	Total
Electrical Service, Controls, Instrumentation				\$274,200
Electrical Service	1	LS	\$110,000.00	\$110,000
Control Panel and PLC Programming	1	LS	\$70,000.00	\$70,000
Conduit & Wiring	1	LS	\$25,000.00	\$25,000
NEMA 4 Junction Box, 6"x6" (3 each for 480V and 120V conduits)	6	EA	\$200.00	\$1,200
Misc. Conduit Fittings, Elbows, Core Drilling and Sealing, etc.	1	LS	\$8,000.00	\$8,000
Instrumentation	1	LS	\$60,000.00	\$60,000
Landscape and Irrigation Modifications				\$228,250
Re-Planting/Seeding Excavation Areas	75,000	SF	\$0.50	\$37,500
Irrigation System (including all components and mainline)	75,000	SF	\$2.15	\$161,250
90-Day Plant Establishment Period	1	LS	\$20,000.00	\$20,000
Tree Planting	19	EA	\$500.00	\$9,500
Site Amenities and Improvements				\$66,550
Baseball Infield	13,000	SF	\$3.00	\$39,000
Concrete Paving	400	SF	\$10.00	\$4,000
Concrete Walkway and Sidewalk	250	SF	\$10.00	\$2,500
Concrete Curb and Gutter	50	LF	\$26.00	\$1,300
AC Paving (Figueroa Street)	600	SF	\$7.00	\$4,200
AC Overlay (Laydown Area)	15,550	SF	\$1.00	\$15,550
Start-up, Testing, Prepare Operations & Maintenance Manuals, and Pr	epare Recor	d Drawi	ngs	\$75,000
SWPPP Implementation	1	LS	\$15,000.00	\$15,000
Start-up and Testing	1	LS	\$50,000.00	\$50,000
O&M Manuals	1	LS	\$5,000.00	\$5,000
Record Drawings	1	LS	\$5,000.00	\$5,000
SUBTOTAL				\$8,434,941
	20%	6	Contingency =	\$1,686,988.20

TOTAL \$10,121,929

Note:

Cost for optional water treatment and re-use has not been included.

A 13' depth was chosed based on an average height from multiple precast concrete vendors. Extending the height will decrease the required footprint and lower hazardous export quantities.

APPENDIX F: DETAILED IMPLEMENTATION SCHEDULE

								APTURE PROJECT AT CAR										
TASK NAME CARSON WATER CAPTURE PROJECT AT CARRIAGE	DUR 1497 d	START Tue 8/2/16	FINISH %	anuary 1 January 21 February 11 1/2 1/9 1/16 1/23 1/30 2/6 2/13 2/20	March 1 March 21 April 11 2/27 3/6 3/13 3/20 3/27 4/3 4/10 4/17 4/24	May 1 May 21 5/1 5/8 5/15 5/22 5/29 6	June 11 /5 6/12 6/19 6/	Uuly 1 Uuly 21 26 7/3 7/10 7/17 7/24 7/31 8	August 11 /7 8/14 8/21 8	September 1 Septembe 3/28 9/4 9/11 9/18 9/25	21 October 11 November 10/2 10/9 10/16 10/23 10/30 11/6	1 November 21 11/13 11/20 11/27 12	December 11 January 1 /4 12/11 12/18 12/25 1/1 1/8 1/	January 21 15 1/22 1/29 2/5	February 11 5 2/12 2/19 2	March 1 1 /26 3/5 3/12 3/	March 21 April 11 19 3/26 4/2 4/9 4/16 4/23	May 1 May 21 June 4/30 5/7 5/14 5/21 5/28 6/4 6/11
REST PARK																		
LACSD issues Notice to Proceed	0 d	Tue 8/23/16	Tue 8/23/16 09	6														
PHASE 1. PRELIMINARY ENGINEERING DESIGN S	TUC 95 d	Tue 8/23/16	Mon 1/2/17 509	6														
Environmental Documentation (LACSD)	135 d	Thu 12/29/16	Wed 7/5/17 489	•														
CEQA Initial Study Check List	10 d	Thu 12/29/16	Wed 1/11/17 1009	6 														
Preparation of a IS/MND	100 d	Thu 1/12/17	Wed 5/31/17 359	6														
IS/MND Public Review Period	20 d	Thu 6/1/17	Wed 6/28/17 05	6														
IS/MND Approved	5 d	Thu 6/29/17	Wed 7/5/17 09	6			İ											
CEQA Support	32 d	Thu 1/26/17	Fri 3/10/17 829	6														
Air Emissions Study	32 d	Thu 1/26/17	Fri 3/10/17 75	6														
Traffic Study	25 d	Thu 1/26/17	Wed 3/1/17 919	6														
	250																	
PHASE 2. DESIGN DOCUMENTS	220 d	Wed 12/28/16	Wed 11/1/17 105	6														
PHASE 2 NTP	20 d	Wed 12/28/16	Wed 1/25/17 09	6														
Design NTP (Prelim)	0 d	Wed 12/28/16	Wed 12/28/16 09	6 2/28														
Phase 2 NTP	0 d	Wed 1/25/17	Wed 1/25/17 09	6 1/25														
201. Project Management	208 d	Mon 1/16/17	Wed 11/1/17 145	6														
202. Geotechnical Support Services	80 d	Mon 2/27/17	Fri 6/16/17 09	6														
202.1 Geotechnical Design Reviews	80 d	Mon 2/27/17	Fri 6/16/17 09	6														
202.2 Soil Management Plan	60 d	Mon 2/27/17	Fri 5/19/17 09	4														
202.2 Oor wanagement rian	00 0	1001 2/2//11	indran 0.	U														
203. Additional Site Investigation	40 d	Thu 2/2/17	Wed 3/29/17 459	6														
204. Active Controls	40 d	Mon 2/27/17	Fri 4/21/17 09	6														
205. Plans, Specifications, and Estimate	145 d	Thu 1/5/17	Wed 7/26/17 26 ⁶	6 A														
Design Drawings (30%)	27.4	Thu: 4/5/47	E: 2/24/47 4000															
Design Drawings (30%)	37 d	Thu 1/5/17	Fri 2/24/17 1009															
LACSD/CITY REVIEW	10 d	Mon 2/27/17	Fri 3/10/17 59	6														
Design Drawings (60%)	30 d	Mon 3/13/17	Fri 4/21/17 09	6														
LACSD/CITY REVIEW	10 d	Mon 4/24/17	Fri 5/5/17 09	6														
Design Drawings (90%)	30 d	Mon 5/8/17	Fri 6/16/17 09															
LACSD/CITY REVIEW	5 d	Mon 6/19/17	Fri 6/23/17 05	6														
Design Drawings (100%)	18 d	Mon 6/26/17	Wed 7/19/17 09	6														
LACSD/CITY Approval	5 d	Thu 7/20/17	Wed 7/26/17 09	6														
207. Demission 0			F-: 10/0//F															
207. Permitting Support	160 d	Mon 2/27/17	Fri 10/6/17 09															
Building and Electrical Permit	20 d	Mon 6/19/17	Fri 7/14/17 09	6														
CARSON CARRIAGE CREST PARK SW AND RUNC	FF CAPTURE P	ROJECT	Task	Milestone	Project Summary	External Mile	estone 🔶	Inactive Milestone	. 0	Manual Task	 С М:	anual Summary Rollu	p Start-only		1	Critical		Progress
ue 2/28/17	J. W I DIVE F		Split	Summary		Inactive Tas		Inactive Summary		Duration-only			Finish-only			Critical Split		

TASK NAME	DUR	START	FINISH %	anuary 1 January 21 February 1	1 March 1 March 21 April 11 20 2/27 3/6 3/13 3/20 3/27 4/3 4/10 4/17		N WATER CA	PROJECT SCHEDULE FC PTURE PROJECT AT CA	RRIAGE CRES		October 11 Nov	ember 1 November 21	December 11 January 1	January 21	February 11	March 1 , , N	larçh 21 April 11	. May1 . Мау21 . Ju
LACFCD Permit	160 d		Fri 10/6/17 1	1/2 1/9 1/16 1/23 1/30 2/6 2/13 2/ 1%	20 2/27 3/6 3/13 3/20 3/27 4/3 4/10 4/17 4	1/24 5/1 5/8 5/15 5/22 5/29 6/5	5 6/12 6/19 6/2	16 7/3 7/10 7/17 7/24 7/31	8/7 8/14 8/21 8	3/28 9/4 9/11 9/18 9/25 10/3	2 10/9 10/16 10/23 10/30	11/6 11/13 11/20 11/27 1	/4 12/11 12/18 12/25 1/1 1/8	1/15 1/22 1/29 2/5	2/12 2/19 2/3	26 3/5 3/12 3/	19 3/26 4/2 4/9 4/16 4/2	23 4/30 5/7 5/14 5/21 5/28 6/4 6
Submit LACFCD Permit Application	10 d	Mon 2/27/17	Fri 3/10/17 10	0%														
Review 60% Plans	25 d	Mon 4/24/17	Fri 5/26/17 0	D%														
Review 90% Plans	25 d	Mon 6/19/17	Fri 7/21/17 0	0%														
Review 100% Plans	15 d	Thu 7/20/17	Wed 8/9/17 0	0%														
Draft MOU	40 d	Mon 4/24/17	Fri 6/16/17 0	0%														
MOU Board Letter	80 d	Mon 6/19/17	Fri 10/6/17 0	0%														
LACFCD Permit Issued	0 d	Fri 10/6/17	Fri 10/6/17	0%							10/6							
208. Bid and Award	53 d	Thu 7/27/17	Mon 10/9/17 (0%														
City Approval to Adopt Plans and Advertise	10 d	Thu 7/27/17	Wed 8/9/17 0															
Advertise for Construction Bids Advertisement Period	0 d 25 d	Wed 8/9/17 Thu 8/10/17		0%					8/9									
Pre-Bid Conference Receive Bids from Prospective Contractors	b 0 b 0	Wed 8/23/17 Wed 9/13/17	Wed 8/23/17 0 Wed 9/13/17 0	0%					8/2	3								
Award Construction Contract	18 d	Thu 9/14/17	Mon 10/9/17 0	0%						×								
CITY PROCUREMENT ITEMS	200 d	Mon 3/13/17	Fri 12/15/17	0%														
Prepare PreCast Structures Plan (with 60%)	30 d	Mon 3/13/17	Fri 4/21/17	0%														
Prepare Procurement Specifications (with 60%)	10.4	Mon 4/10/17	Fri 4/21/17 0	201														
Prepare Procurement Specifications (with 60%)	10 d	MON 4/10/17	FII 4/2 1/17 C	070														
Prepare PreCast Bid Documents	10 d	Mon 4/10/17	Fri 4/21/17 0	0%														
LACSD/City Review	10 d	Mon 4/24/17	Fri 5/5/17 0	0%														
Final PreCast Bid Package	10 d	Mon 5/8/17	Fri 5/19/17 0	0%														
City Prepare RFP Package	10 d	Mon 5/22/17	Fri 6/2/17 0	0%														
Issue RFP for PreCast Structures	0 d	Fri 6/2/17	Fri 6/2/17 (0%		6/2												
RFP Response Period	20 d	Mon 6/5/17	Fri 6/30/17 0	0%														
Receive Proposals from Suppliers	0 d	Fri 6/30/17	Fri 6/30/17 0	0%				6/30										
Select and Issue Contract for Procurement	20 d	Mon 7/3/17	Fri 7/28/17 0	0%														
Procure Pre-Cast Structures	80 d	Mon 7/31/17	Fri 11/17/17	0%														
Submit Invoice to Caltrans	20 d	Mon 11/20/17	Fri 12/15/17 0	0%														
PHASE 3. CONSTRUCTION	285 d	Tue 10/10/17	Mon 11/12/18 0	070														
Issue NTP to Construction Contractor	5 d	Tue 10/10/17	Mon 10/16/17 0	0%														
Contractor Move-in Period	40 d	Tue 10/17/17	Mon 12/11/17 0	0%														
Construction of SW Capture Facility	160 d	Tue 12/12/17	Mon 7/23/18 (0%														
Clearing and Excavation	60 d	Tue 12/12/17	Mon 3/5/18 0	0%														
•																		
CARSON CARRIAGE CREST PARK SW AND RUNOFI 10 2/28/17	CAPTURE P	ROJECT	Task Split	Milestone Summary	 Project Summary External Tasks 	External Miles		Inactive Milesto		Manual Task			p Start-o			Critical Critical Split		

							CARSON WATER C	PROJECT SCHEDULE FOR APTURE PROJECT AT CARRIAGE CRES								
	DUR	START	FINISH	%	anuary 1 January 21 February 1 1/2 1/9 1/16 1/23 1/30 2/6 2/13 2/	1 March 1 March 21 April 11 20 2/27 3/6 3/13 3/20 3/27 4/3 4/10 4/17 4/2	May 1 May 21 June 11 4 5/1 5/8 5/15 5/22 5/29 6/5 6/12 6/19 6	July 1 July 21 August 11 /26 7/3 7/10 7/17 7/24 7/31 8/7 8/14 8/21 8	September 1 September 2 /28 9/4 9/11 9/18 9/25 10	21 October 11 0/2 10/9 10/16 10/23	November 1 November 21 December 1 10/30 11/6 11/13 11/20 11/27 12/4 12/11 12/18	January 1 2/25 1/1 1/8	January 21 February 11 /15 1/22 1/29 2/5 2/12 2/19	March 1 March 21 April 11 2/26 3/5 3/12 3/19 3/26 4/2 4/9 4/16 4/2	May 1 May 21 3 4/30 5/7 5/14 5/21	June 1 5/28 6/4 6/11
Infiltration/Storage Facility	60 d	Tue 3/6/18	Mon 5/28	/18 09	6											
Construction of Pump Station and Pre-Treatment	60 d	Tue 3/6/18	Mon 5/28	/18 09	6											
Storm Drain Diversion (Rubber Dam and DW Inlet)	40 d	Tue 5/1/18	Mon 6/25	/18 09	6										9	
Construction of Surface Improvements	40 d	Tue 5/20/18	Mon 7/23	/18 09	4											
Construction of Sunace improvements	40 d	108 5/29/18	W01 7/23	/16 07	0											
Installation of Control Systems	20 d	Tue 6/26/18	Mon 7/23	/18 09	6											
Operational Testing	20 d	Tue 7/24/18	Mon 8/20	/18 09	6											
Site Walkthrough	20 d	Tue 8/21/18	Mon 9/17	/18 09	6											
-																
Field Acceptance	20 d	Tue 9/18/18	Mon 10/15	/18 09	6											
		T . 7/04/40	14	(4.0) 00												
Operations and Maintenance Manual	20 d	Tue 7/24/18	Mon 8/20	/18 09	o											
As-Built Drawings	20 d	Tue 10/16/18	Mon 11/12	/18 09	6											
300. Water Quality Technical Support	160 d	Tue 10/10/17	Mon 5/21	/18 0%	6					7						
CALTRANS Funding 1	1497 d	Tue 8/2/16	Thu 4/28	/22 0%	6											
City executes agreement with Caltrans	0 d	Tue 8/2/16	Tue 8/2	/16 0%	6											
City to bill Caltrans for FY 2015-16 Funding Allocation (\$2.5M)	0 d	Tue 4/24/18	Tue 4/24	/18 0%	6									• 4	24	
City to bill Caltrans for FY 2016-17 Funding	0 d	Tue 4/30/19	Tue 4/30	/19 0%	6											
Allocation (\$3M)																
City to bill Caltrans for FY 2017-18 Funding Allocation (\$2.5M)	0 d	Thu 4/30/20	Thu 4/30	/20 0%	6											
City to hill College for EV 2048 40 Eventing		Thu: 4/20/24	Thu: 4/20	/24 00												
City to bill Caltrans for FY 2018-19 Funding Allocation (\$2.5M)	0 d	Thu 4/29/21	Thu 4/29	/21 0%	o											
City to bill Caltrans for FY 2019-20 Funding Allocation (\$2.5M)	0 d	Thu 4/28/22	Thu 4/28	/22 0%	6											
Allocation (\$2.5M)																
Project Complete	0 d	Mon 11/12/18	Mon 11/12	/18 0%	6											

Project: CARSON CARRIAGE CREST PARK SW AND RUNOFF CAPTURE PROJECT Date: Tue 2/28/17	Task Solit	Milestone	•	Project Summary External Tasks	External Milestone	•	Inactive Milestone	Manual Task	Manual Summary Rollup Start-only Manual Summary Finish-only	С Э	Critical Critical Solit	Progress	Ф ————————————————————————————————————	
SCHEDIII E for Carson Water Canture Project at Carriage Crest Park 02 28 2017	opin	Gunnary	• •		Indeave rask		Page 3				onical opin			